EXPLORING DEEPER: WHAT ARE YOU LOOKING FOR? WHAT DO YOU NEED TO FIND?

Travis Murphy
19th August, 2016
DMQ Project Team

Dr Travis Murphy (Exploration and Mine Geology)

Dr Mark Hinman (Exploration and Mine Geology)

Dr Mark Pirlo (Exploration Geochemistry)

John Donohue (Exploration Geophysics)

Mark Jones (Software Engineering & Database Support)

Adrian Pratt (Consultant Mining Engineer)

Collectively >100 years mining industry experience
Mining Informed Targeting/Prospectivity

- The research project is centred on part of the Eastern Fold Belt encompassing the Osborne-Kulthor Cu-Au mine, Starra line of Au-Cu deposits and mines, Mt Dore Cu deposit, Merlin Mo deposit, Mt Elliott Cu-Au complex (SWAN, Domain 81, Corbould, Mt Elliott) and numerous historic mining operations and prospects.

- District with multiple Cu-Au mines, lots of smoke, yet only one large mass-mineable deposit (Ernest Henry), and a large prospective resource (SWAN – Mt Elliott).

- What are the prospects for discovery of additional mass-mineable deposits if we deepen the search space to 2km below surface?.....and what would a mineable deposit need to look like at this depth?

<table>
<thead>
<tr>
<th></th>
<th>Mt</th>
<th>Cu (%)</th>
<th>Au (g/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ernest Henry</td>
<td>220</td>
<td>1.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Swan</td>
<td>375</td>
<td>0.44</td>
<td>0.25</td>
</tr>
</tbody>
</table>

1 Glencore Reserves & Resources, 2014
2 AME – Mt Elliott Scoping Study, 2012
DMQ aims to reduce the risk of deep exploration in the Cloncurry Cu-Au district through:

• Detailed geological understanding, informed by comprehensive analysis of geological, geophysical and geochemical datasets

• Considered interpretation of the controls on known orebody location, geometry, and tenor

• Insights into economic viability as affected by variations in deposit size, geometry, grade, depth, and proximity to transport and services infrastructure.
Introduction to PEET-UG

Prospect Economic Evaluation Tool - Underground

Interactive, spread-sheet based tool, for prospect/target evaluation (Pre-’Concept level’ analysis) in relative terms.

3 key purposes:

1. Where should I be exploring?mining constraints on prospectivity utilized in exploration strategy development.

2. Amongst my portfolio of targets/prospects, which of these has the potential to sustain a mining operation? Tool for ranking geological targets in terms of potential viability.

3. Tool for stage-gating the exploration process: is the prospect worth continued effort/expenditure?

The evaluative tool has been constructed to determine relative value of deposits amenable to underground mining, and as a standalone operation.
Venturing off the outcrop

Mt Isa Inlier
Greenfields Potential

>70% is under cover and virtually unexplored

(Hutton, 2015)
Mineral occurrences coloured as per legend on slide 6 & 9
No-go zone for EFB-style Cu-Au?

However, not all ore deposit-types are created equally.....
In-ground Value of a Selection of Metalliferous Deposit Types (Metal Prices as at 29/6/2016)

Bubble Size Indicates Relative Value of Deposits Using the Product of Unit Value and Resource Tonnage

Value (USD) of Contained Metal per Tonne

Total Resource Tonnage (million tonnes)
In-ground Value of a Selection of Metalliferous Deposit Types (Metal Prices as at 29/6/2016)
Extraction Options at Depth – Operating Costs

- SLOS (Atlas Copco, 2007)
- SLC
- BC (Atlas Copco, 2007)
- ISL
- SLG (DMQ Project, 2015)
- BPC
- ISM Consults (2013)

![Diagram of extraction options at depth]

M3 Consultants, 2013
Extraction Options at Depth – Operating Costs

SLOS

PEET Options

Not PEET Option
Key workings of PEET-UG

1. Inputs & Assumptions
 - Grade Distribution
 - Grade
 - Dip
 - Width
 - Depth of Cover
 - Down-dip Extent
 - Length of new road required
 - Distance to transport hubs
 - S.G.
 - Mining & Met. recovery
 - Exchange rate
 - Strike-length
 - Discount rate
 - Metal prices

2. Derived Quantities
 - Tonnage
 - In-ground value
 - Contained metal
 - Tonnes/vertical metre
 - Mine capex estimates
 - Mining rate potential
 - Mining advance rate
 - Haulage distances
 - Opex estimates (Mining + Geology + Processing + Admin)

3. Mining Method Selection
 - Potential mining block height
 - SLOS vs SLC vs BC determined by deposit geometry, dip, min. block height, in-ground ‘ore’ value
 - Truck vs Conveyor test (determined by depth below surface and production rate)

4. Project & Prodtm. Schedule
 - Mine development by year
 - Production by year
 - Schedule of ore processed and recovered metal
 - Schedule of concentrate produced (tonnes and grade)

The University of Queensland Australia
SMi BRC Wi-Bryan Mining & Geology Research Centre

14
Key workings of PEET-UG (cont’d)

5. Revenue Schedule
- Payable metal by year
- Refining charges per year
- Realisation costs by year
- Total Gross Revenue by year

6. Capex Estimate Models
- Declines
- Vertical development
- Fixed plant and Infrastructure
- Processing Plant
- Lateral development
- Mobile equipment
- Infrastructure and services
- Total capex
- Tax deduction for capex
- Sustaining capex

7. Opex Estimate Models
- Mining costs assuming steady state production
- Processing costs
- General & Admin costs by year

8. Evaluation Model
- Collated revenue, capex, opex
- NPV calculation
- IRR calculation
- Maximum negative cash position
- EBITDA
- Time to payback
- Net Cashflow
Results: comparison with peer projects

- Collated key inputs and outputs on single sheet
- Result Check: Mined /Processed Tonnes (bubbles) and Grades Against Peer Projects
- Result Check: Production Rate vs Ore Reserve

Not intended for critical financial or feasibility analysis
PEET-UG used in anger.....on simulated data
Financial measures vs grade/-tonnage/geometry (mining method)

Above, Internal rate of return (IRR) vs grade. Bubble colour corresponds with geometry/mining-block (see image in top RH corner of slide). Bubble size is proportional to NPV, some annotated. Bigger target = more tonnes = higher value. Dashed line represents the 25% IRR ‘target’ outcome (AP pers. comms, 2016).

Parameters:
- 300m depth to top of deposit
- 80 degree dip
- CuEq calculation assumed Cu at USD$5500/t, and Au at USD$1200/oz, and a 20k:1 ratio of Cu:Au, as broadly observed in IOCG systems.
Impact of Orebody Dip and Geometry on Mining (& Financial) performance

Production rate vs Orebody dip, with bubble size indicating relative NPV (AUD millions)

Production Rate vs Orebody Footprint (bubble size = dip ranging from 90 to 45 deg)
Indicative ‘cut-off’ grades by mining method/orebody geometry

CuEq grade vs Depth vs Geometry (& Mining Method)

Cu Equivalent grade (Cu: USD 5,500/t, Au: USD 1,200/oz) at NPV=0

Parameters:
- 500m mining block height only
- 80 degree dip
- CuEq calculation assumed a 20k:1 ratio of Cu:Au, as broadly observed in IOCG systems.

Parameters:
- 500m mining block height only
- 80 degree dip
- CuEq calculation assumed a 20k:1 ratio of Cu:Au, as broadly observed in IOCG systems.
DMQ Summary

Aiming to reduce the risk profile of exploring at depth in the Cloncurry district by identifying tracts of ground which are:

• prospective for large, mass-mineable mineral deposits, i.e. **fertility**

• comprise geotechnical, geothermal, geographical conditions which are technically amenable to mass-mining methods, i.e. **mineability**, and

• comprise all of the above, but with the prospect of positive financial outcomes....subject to internal & external factors, i.e. **viability**.