SMIBRC WH Bryan Mining & Geology Research Centre

Cloncurry IOCG Workshop 2016

'New insights into the Architectural Development of the southern Cloncurry IOCG Terrain - Controls and Timing of Mineralization'

Mark Hinman

Geological Survey of Queensland

Deep Mining Queensland Project - southern Cloncurry Belt

'Prospectivity - Mineability - Viability'

Overall aims to reduce risk of exploring for large, mass-mineable deposits at depth in the southern Cloncurry Belt.

Reported here:

- (1) Updated <u>solid geology</u>, <u>structural</u>, & <u>tectono-stratigraphic</u> <u>interpretation</u> which builds on the published GSQ 100K solid geology, utilizing the smaller scale prospect geology & detailed geophysics made available by Chinova
- (2) Some resource-scale examples of <u>timing</u> and <u>controls</u> on IOCG-style mineralisation

DMQ Project Team

Dr Travis Murphy (Exploration & Mine Geology) Dr Mark Hinman (Exploration & Mine Geology) Dr Mark Pirlo (Exploration Geochemistry) John Donohue (Exploration Geophysics) Mark Jones (Software Engineering & Database Support) Adrian Pratt (Mining Engineer)

Acknowledgements

Chinova ... data including detailed geophysics, detailed prospect mapping & project ddh databases
GSQ ... pre-release 100K mapping (Selwyn, Mount Angelay), geochron database
Historic Mapping ... Leishman, 1970s-80s; Searl, 1952; ... & others
Personal ... understanding gained during contract work for Ivanhoe, Inova & Chinova, 2011-2015

Deep Mining Queensland Project Location Eastern Fold Belt between Cloncurry & Osborne

approx 180x50km

Regional vs **Detailed Magnetics**

GA Mag tmi-rtp v6 (2015) 80m grid

Chinova detailed Mag merge vrmi-2vd (2010) 10m grid

DUNT DORE

inova resources

... has allowed a high fidelity interpretation

> package continuity
> package architecture
> faulting and fine structure

MERLIN MOUNT DORE

MT ELLIOTT

251 244 STARRA

SWAN

KEY POINTS DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation focuses within <u>late Isan (D3)</u>, <u>brittle, fracture-breccia networks</u> that are controlled by <u>local competency contrast</u> & <u>strain partitioning</u>.
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously</u> <u>post-peak metamorphic</u>
- <u>D3 structuring comprises short-strike / small-displacement faults, and localised</u> reactivation of older structures in contrast with, <u>D2 faults which are regional in strike</u> & commonly juxtapose packages of contrasting lithology & age.

(Dichotomy: D2 structure well imaged (mapping, seismic, geophysics ..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

- In D3 time, crystallising granites (that drive the high temp, IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure focusing IOCG mineralisation.
- <u>Pre-orogenic architectures</u> likely play critical roles in the <u>geometries</u> of intrusion, brittle deformation, IOCG fluid circulation, & the localisation of ore formation.

Tectono-Stratigraphic Development of Eastern Fold Belt

Updated 2000 NWQMP Tx Chart to reflect current understanding of EFB package relationships

&latest geochronology (Withnall-Parsons, 2007-2009; NWQMEP, 2011)

Re-built EFB Solid Geology

highlighting packages & deformation events that impact their geometry

~1775-1765Ma **Bulonga**

THE UNIVERSITY OF QUEENSLAND SMIBRC WH Bryan Mining & Geology Research Centre

SMIBRC WH Bryan Mining & Geology Research Centre

15,600,000 mE

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA

2

Roxmere Corella Marraba-Mitakoodi-DCM Bulonga

SMIBRC WH Bryan Mining & Geology Research Centre

Kuridala-Starcross-Llewelyn

15,600,000 mE

1111 32 Kuridala-Starcross 1 WONGA Ne 144 Wonga MFCV Corella Marraba-Mitakoodi-DCM Bulonga

THE UNIVERSITY OF QUEENSLAND SMIBRC WH Bryan Mining & Geology Research Centre

~1680-1670Ma New Hope-Mt Norna

15,600,000 mE

11111111111 _ - A + 1 + - 4 Wonga MFCV 16.30

New Hope-Mt Norna Kuridala-Starcross-Llewelyn Boxmere Staveley WONGA Corella Marraba-Mitakoodi-DCM Bulonga Argylla

THE UNIVERSITY OF QUEENSLAND SMIBRC WH Bryan Mining & Geology Research Centre

~1670-1650Ma Answer-Toole Creek

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA

FRF = Fountain Range Fault PFZ = Pilgrim Fault Zone HT = Highway Thrust OF = Overhang Fault CF = Cloncurry Fault

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA

1

Williams Suite - HEAT source - circulation driver **Isan D3** - BRITTLE, shallow crustal deformation Quamby Basin - continental, oxidised, evaporitic?

<1500Ma post Isan Faulting widespread

SMIBRC WH Bryan Mining & Geology Research Centre

<1500Ma post Isan Faulting widespread & appears to reflect

.... older, pre-orogenic architectures 'significant crustal penetration & persistance'

NE architecture

Wonga-reactn>MFCV margin Mitakoodi culmination D2 folding D1 & D2 deformation partitioning post-Williams reactn

NW architecture

Williams margins D2 deformation partitioning post-Williams reactn

older NNW architecture post-Williams reactn

>>> speculated to reflect CoverSeq1 & 2, and pre-Barramundi (?Archaean) depositional architectures

>>> significant influence on IOCG mineral system geometry and ultimate sites of metal accumulation in D3

> FRF = Fountain Range Fault PFZ = Pilgrim Fault Zone HT = Highway Thrust OF = Overhang Fault CF = Cloncurry Fault

SMIBRC WH Bryan Mining & Geology Research Centre

Starra-Merlin-Mount Dore

THE UNIVERSITY OF QUEENSLAND X \mathbf{i}

SMIBRC WH Bryan Mining & Geology Research Centre

15,642,500 mE

SMIBRC WH Bryan Mining & Geology Research Centre

Stavely Fm -qHIF

Stavely Fm -qMIF

SMIBRC WH Bryan Mining & Geology Research Centre

15,642,500 mE

Stavely Fm -qHIF

Stavely Fm -qMIF

Gin Creek Granite

15,642,500 mE

Gin Creek Granite

AUSTRALIA

15,642,500 mE

15,642,500 mE

Gin Creek Granite

THE UNIVERSITY OF QUEENSLAND AUSTRALIA

SMIBRC WH Bryan Mining & Geology Research Centre

Stavely Fm -qMIF Gin Creek Granite 15,642,500 mE

1km

15.642.500 ml

202

15.640.000 m

Starra-Merlin-Mount Dore

5K-10K Leishman Geology (1970s-1980) DMQ Interpretation (2016)

unconformable onlap of Answer Slate

• D1 N'ward overthrust of Staveley over Answer

> EW F1 folds; highly attenuated/folded MIF-HIF > preserves FW block architecture

SMIBRC WH Bryan Mining & Geology Research Centre

15.642.500 mE

15,642,500 mE

Starra-Merlin-Mount Dore

5K-10K Leishman Geology (1970s-1980) DMQ Interpretation (2016)

unconformable onlap of Answer Slate

• D1 N'ward overthrust of Staveley over Answer

> EW F1 folds; highly attenuated/folded MIF-HIF > preserves FW block architecture

• D2 folding of D1 overthrust into vertical > F1 fold sub-vertical vs sub-horiz F2 folds

Starra-Merlin-Mount Dore

5K-10K Leishman Geology (1970s-1980) DMQ Interpretation (2016)

unconformable onlap of Answer Slate

• D1 N'ward overthrust of Staveley over Answer

> EW F1 folds; highly attenuated/folded MIF-HIF > preserves FW block architecture

• D2 folding of D1 overthrust into vertical > F1 fold sub-vertical vs sub-horiz F2 folds

• D3 shortening: transpressive BRITTLE reactivation

> at Starra, footwall architecture contribution to fract-bx > at Merlin-Mt Dore, strain intensification

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF OUEENSLAND

AUSTRALIA

Starra-Merlin-Mount Dore

5K-10K Leishman Geology (1970s-1980) DMQ Interpretation (2016)

unconformable onlap of Answer Slate

• D1 N'ward overthrust of Staveley over Answer

> EW F1 folds; highly attenuated/folded MIF-HIF > preserves FW block architecture

• D2 folding of D1 overthrust into vertical > F1 fold sub-vertical vs sub-horiz F2 folds

• D3 shortening: transpressive BRITTLE reactivation

> at Starra, footwall architecture contribution to fract-bx > at Merlin-Mt Dore, strain intensification

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF OUEENSLAND

AUSTRALIA

15,642,500 mE

202

Starra-Merlin-Mount Dore

5K-10K Leishman Geology (1970s-1980) DMQ Interpretation (2016)

unconformable onlap of Answer Slate

• D1 N'ward overthrust of Staveley over Answer

> EW F1 folds; highly attenuated/folded MIF-HIF > preserves FW block architecture

• D2 folding of D1 overthrust into vertical > F1 fold sub-vertical vs sub-horiz F2 folds

• D3 shortening: transpressive BRITTLE reactivation

> at Starra, footwall architecture contribution to fract-bx > at Merlin-Mt Dore, strain intensification

SMIBRC

WH Bryan Mining & Geology Research Centre

• post-mineral reverse faulting of MDG over M-MD

THE UNIVERSITY

OF OUEENSLAND

AUSTRALIA

2012 Resource Model - mined/probable

Mount Dore-Merlin

THE UNIVERSITY OF QUEENSLAND

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: <u>carb silt dominant</u>

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: carb silt dominant

D3 Faulting: complex, curvilinear, anastomosing

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: carb silt dominant

D3 Faulting: complex, curvilinear, anastomosing

Brittle, fracture & breccia Damage Zones ...

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: <u>carb silt dominant</u>

D3 Faulting: complex, curvilinear, anastomosing

Brittle, fracture & breccia Damage Zones ...

- ... in carbonaceous silts & along reactivated contact
- & along reactivated contacts .. host Cu mineralisation

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: carb silt dominant

D3 Faulting: complex, curvilinear, anastomosing

Brittle, fracture & breccia Damage Zones ...

- ... in carbonaceous silts
- & along reactivated contacts .. host Cu mineralisation

D3 Faults ... small throws! **NOT Regional Structures**

Mt Dore - Cross Section 7,604,600N

Gradational stratigraphy: Staveley-Roxmere-(SF)-Kuridala Kuridala: carb silt dominant

D3 Faulting: complex, curvilinear, anastomosing

Brittle, fracture & breccia Damage Zones ...

- ... in carbonaceous silts
- & along reactivated contacts .. host Cu mineralisation

D3 Faults ... small throws! **NOT Regional Structures**

Granite Reverse Fault highly planar, post-mineral, significant throw

Mount Elliott - SWAN

50

OP1 WONGA
OP1 WONGA
OP1 WONGA
OP1 WONGA
WONGA
Eastern Fold Belt Timespace

P???? Toole Creek Kuridala Roxmere Quartzite Staveley OP1 WONGA Eastern Fold Belt Timespace	
Eastern Fold Belt Timespace	
	Eastern Fold Belt Timespace

SWAN 0.75eq%Cu Long Section ... looking SW through SWAN

SWAN 0.75eq%Cu Long Section ... looking SW through SWAN

• post-mineral D3 Faults

SWAN 0.75eq%Cu Long Section ... looking SW through SWAN

- post-mineral D3 Faults
 family cuts Squirrel Hills Granites

THE UNIVERSITY OF QUEENSLAND

THE UNIVERSITY OF QUEENSLAND

disharmonic D2 folding during high grade metamorphism
 > meta pelites-psammites, amphibolites, MIF

disharmonic D2 folding during high grade metamorphism
> meta pelites-psammites, amphibolites, MIF

• D2 Faulting ... short limb, transpressive failure .. DUCTILE

SMIBRC

WH Bryan Mining & Geology Research Centre

disharmonic D2 folding during high grade metamorphism
> meta pelites-psammites, amphibolites, MIF

• D2 Faulting ... short limb, transpressive failure .. DUCTILE

• at Kulthor, D2 fault-juxtapositioning of opposite facing limbs

disharmonic D2 folding during high grade metamorphism
> meta pelites-psammites, amphibolites, MIF

- D2 Faulting ... short limb, transpressive failure .. DUCTILE
- at Kulthor, D2 fault-juxtapositioning of opposite facing limbs
 - D3 fault reactivation .. BRITTLE (where lithology allows!)

SMIBRC

WH Bryan Mining & Geology Research Centre

The University Of Oueensland

USTRALIA

disharmonic D2 folding during high grade metamorphism
> meta pelites-psammites, amphibolites, MIF

- D2 Faulting ... short limb, transpressive failure .. DUCTILE
- at Kulthor, D2 fault-juxtapositioning of opposite facing limbs
 - D3 fault reactivation .. BRITTLE (where lithology allows!)

Kulthor & Osborne Cu-Au

SMIBRC

WH Bryan Mining & Geology Research Centre

THE UNIVERSITY

OF QUEENSLAND

USTRALIA

Both Kulthor & Osborne associated with similar, siliceous, meta psammitic-siltstone, amphibolite ± MIF packages (BRITTLE)

... in a sea of DUCTILE migmatitic, granoblastic & pegmatitic, interbedded meta-pelites & psammites.

THE UNIVERSITY

USTRALIA

Both Kulthor & Osborne associated with similar, siliceous, meta psammitic-siltstone, amphibolite ± MIF packages (BRITTLE)

... in a sea of **DUCTILE** migmatitic, granoblastic & pegmatitic, interbedded meta-pelites & psammites.

Kulthor sulphide-dominated

ISCG

Osborne oxide-dominated

IOCG

The University Of Oueensland

Both Kulthor & Osborne associated with similar, siliceous, meta psammitic-siltstone, amphibolite ± MIF packages (BRITTLE)

> ... in a sea of DUCTILE migmatitic, granoblastic & pegmatitic, interbedded meta-pelites & psammites.

> > Both post-peak metamorphism & brittle, fracture & breccia controlled Adshead (1995), King (2001) *despite* Re-Os date of Gauthier et al (2001)

KULTHOR

Peregrine

Kulthor

ISCG

sulphide-dominated

Osborne

oxide-dominated

OCG

Sole

Central Block comprising

BRITTLE, siliceous, SULPHIDIC, finely-laminated sediment

amphibolite psammite-dominant mixed psammite-pelite

.... in a FW and HW sea of <u>DUCTILE</u> migmatitic, granoblastic & pegmatitic, interbedded meta-pelites & psammites.

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

D3 contact reactivation, breccia & fracture network in DOL .. Main or KM Lode

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

D3 contact reactivation, breccia & fracture network in DOL .. Main or KM Lode D3 complex, breccia & fracture zones in thickest DOL .. Central or KC Lodes

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

D3 contact reactivation, breccia & fracture network in DOL .. Main or KM Lode D3 complex, breccia & fracture zones in thickest DOL .. Central or KC Lodes

... largely where the <u>BRITTLE</u>, <u>sulphidic</u> package juxtaposes the D3 brittlyreactivated FW D2 structure & the thickest development of DOLOMITE

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

D3 contact reactivation, breccia & fracture network in DOL .. Main or KM Lode D3 complex, breccia & fracture zones in thickest DOL .. Central or KC Lodes

... largely where the <u>BRITTLE</u>, <u>sulphidic</u> package juxtaposes the D3 brittlyreactivated FW D2 structure & the thickest development of DOLOMITE

Abundant local supply of sulphide >> **ISCG ore**

Post-D2 relaxation phase, probably still at high grade ...

mega-coarsely crystalline DOLOMITE

D3 contact reactivation, breccia & fracture network in DOL .. Main or KM Lode D3 complex, breccia & fracture zones in thickest DOL .. Central or KC Lodes

... largely where the <u>BRITTLE</u>, <u>sulphidic</u> package juxtaposes the D3 brittlyreactivated FW D2 structure & the thickest development of DOLOMITE

Abundant local supply of sulphide >> ISCG ore

Kulthor sulphide-dominated Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

Adshead (1995), King (2001), Hinman (2012)

Kulthor sulphide-dominated

Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

VS

Adshead (1995), King (2001), Hinman (2012)

1595Ma Re-Os molybdenite Gauthier et al (2001)

Merlin <u>Deformed</u> Molybdenite

Kulthor-Osborne

Merlin molybdenite-matrix breccia (from Kirwin, 2009)

Kulthor sulphide-dominated

Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

Adshead (1995), King (2001), Hinman (2012)

1595Ma Re-Os molybdenite Gauthier et al (2001) VS

Merlin <u>Deformed</u> Molybdenite

Kulthor-Osborne

Merlin molybdenite-matrix breccia (from Kirwin, 2009)

Merlin Mo1-Mo2, Subira Sharma CODES (2015)

Kulthor sulphide-dominated Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

VS

Adshead (1995), King (2001), Hinman (2012)

1595Ma Re-Os molybdenite Gauthier et al (2001)

Merlin Deformed Molybdenite

Kulthor-Osborne

Merlin molybdenite-matrix breccia (from Kirwin, 2009)

Merlin Mo1-Mo2, Subira Sharma CODES (2015)

Mo1 primarily precipitated, inclusion-rich, Re-rich Mo2 deformed-kinked, inclusion-cleared, Re-depleted

Kulthor sulphide-dominated Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

VS

Adshead (1995), King (2001), Hinman (2012)

1595Ma Re-Os molybdenite Gauthier et al (2001)

Merlin Deformed Molybdenite

Kulthor-Osborne

Merlin molybdenite-matrix breccia (from Kirwin, 2009)

Merlin Mo1-Mo2, Subira Sharma CODES (2015)

Mo1 primarily precipitated, inclusion-rich, **Re-rich** Mo2 deformed-kinked, inclusion-cleared, **Re-depleted**

disturbed Re-Os system Re-depletion > older ages

Kulthor sulphide-dominated Osborne oxide-dominated

Both post-peak metamorphism & brittle, fracture & breccia controlled

Adshead (1995), King (2001), Hinman (2012)

1595Ma Re-Os molybdenite Gauthier et al (2001) VS

Merlin Deformed Molybdenite

Kulthor-Osborne

Merlin molybdenite-matrix breccia (from Kirwin, 2009)

Merlin Mo1-Mo2, Subira Sharma CODES (2015)

Mo1 primarily precipitated, inclusion-rich, Re-rich Mo2 deformed-kinked, inclusion-cleared, Re-depleted

disturbed Re-Os system **Re-depletion > older ages**

Kulthor sulphide-dominated ISCG

Osborne oxide-dominated **IOCG**

Both post-peak metamorphism & brittle, fracture & breccia controlled

Adshead (1995), King (2001), Hinman (2012)

VS

IOCG Process Models

Barton & Johnson (2004), Williams et al. (2005), Williams et al. (2010)

IOCG Process Models

Barton & Johnson (2004), Williams et al. (2005), Williams et al. (2010)

IOCG Process Models

Barton & Johnson (2004), Williams et al. (2005), Williams et al. (2010)

Duncan et al. (2010)

Re-Os moly ages ... HANDLE WITH CARE!

Re-Os moly ages ... HANDLE WITH CARE!

Other isotopic ages on well-constrained, **K-alteration minerals** directly associated with IOCG-style ore will yield mineralisation timing constraints ...

100

Duncan et al. (2010)

Re-Os moly ages ... HANDLE WITH CARE!

Other isotopic ages on well-constrained, **K-alteration minerals** directly associated with IOCG-style ore will yield mineralisation timing constraints ...

... more in line with the geological observations of:

- Post-peak metamorphism,
- K-alteration overprinting Na-Ca alteration
- D3-4 brittle control, and
- Temporal & spatial association with Williams magmatism

Duncan et al. (2010)

DMQ southern Cloncurry IOCG Belt

• IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, fracture-breccia <u>deformation</u>

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

• In D3 time, crystallising granites (that drive the high temp IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure that focuses IOCG mineralisation

DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- <u>Local competency contrasts</u> & <u>strain partitioning</u> play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

- In D3 time, crystallising granites (that drive the high temp IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure that focuses IOCG mineralisation
- Subtle pre-orogenic, (potentially depositional), architectures play critical roles in (Isan) deformation partitioning and intrusion geometry, and therefore, strongly impact on localisation of IOCG ore formation

DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- Local competency contrasts & strain partitioning play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

- In D3 time, crystallising granites (that drive the high temp IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure that focuses IOCG mineralisation
- Subtle pre-orogenic, (potentially depositional), architectures play critical roles in (Isan) deformation partitioning and intrusion geometry, and therefore, strongly impact on localisation of IOCG ore formation

DMQ Project going forward will tease these controls & interplays further into 3D!

SMIBRC WH Bryan Mining & Geology Research Centr

DMQ southern Cloncurry IOCG Belt

- IOCG-style mineralisation forms via a <u>complex interplay</u> in the geometries of <u>thermally-driven</u>, <u>circulation of</u> (?basinal) <u>brines</u>, and the contemporaneous Isan D3 <u>patterns of brittle</u>, <u>fracture-breccia deformation</u>
- Local competency contrasts & strain partitioning play critical roles in the geometries of brittle failure & ore localisation
- Ore deposition is focused within brittle, breccia/fracture networks that are <u>ubiquitously post-peak</u> <u>metamorphic</u>.
- Moly Re-Os age dating needs to be handled with extreme caution particularly in deformed ores.
- D3 faulting comprises short-strike / small-displacement faults, and localised reactivation of older structures
- Contrasts with D2 faults which are regional in strike & commonly juxtapose packages of contrasting lithology & age

(Dichotomy: D2 structure well imaged (mapping, seismic..) cf. D3 structures, likely highly seismic, but generally not well imaged!)

- In D3 time, crystallising granites (that drive the high temp IOCG fluid systems) themselves locally play roles in strain partitioning which drives the brittle failure that focuses IOCG mineralisation
- Subtle pre-orogenic, (potentially depositional), architectures play critical roles in (Isan) deformation partitioning and intrusion geometry, and therefore, strongly impact on localisation of IOCG ore formation

DMQ Project going forward will tease these controls & interplays further into 3D!

SMIBRC WH Bryan Mining & Geology Research Centr

