SMIBRC WH Bryan Mining & Geology Research Centre

Digging Deeper 2015

"Deep Mining Queensland (DMQ) Project....where Exploration meets Mass Mining"

Travis Murphy

DMQ Project Team

Dr Travis Murphy (Exploration and Mine Geology)
Dr Mark Hinman (Exploration and Mine Geology)
Dr Mark Pirlo (Exploration Geochemistry)
John Donohue (Exploration Geophysics)
Mark Jones (Software Engineering & Database Support)

~75 years mining and exploration geoscience experience

SMIBRC WH Bryan Mining & Geology Research Centre

BRC: the Mass-Mining Research Niche

- Mass-mining research : Benchmarking, Technology, & Innovation
 - 'International Caving Study',
 - 'Mass Mining Technology 1-3',
 - 'Supercaves',
 - 'Next Generation Cave Mining'
- The role of Geology in Mass-Mining: retrospective analysis feeding innovative predictive models
 - 'Geology and Mass Mining'
- Mass-Mining 'informed' exploration
 - 'Deep Mining Queensland' (DMQ)

Why Deep?....by Necessity!

SMIBRC WH Bryan Mining & Geology Research Centre

Why Deep?....Opportunity!

Mining Method Selection - Fundamentals

- Geometry/orientation
- Tonnage/production potential
- Required production rate
- Rock mass characteristics
- Depth below surface
- Stress conditions
- Economics: Recoverable metal vs Capital +

Operating costs

Reduced optionality if deposit is deep and large and/or low grade

Extraction Options at Depth – Operating Costs

THE UNIVERSITY OF QUEENSLAND

SMIBRC WH Bryan Mining & Geology Research Centre

(http://resolutioncopper.com/the-project/mine-plan-of-operations/)

(M3 Consultants, 2013)

Technical Factors Affecting Deep Mass-Mineability

- Orebody geometry/continuity & orientation are critical
- Stress.....works with us in cave mining, but needs to be managed
- Geothermal gradient
- Caveability of the orebody and overburden
- Characteristics of the orebody and overburden:
 - Reactivity (spontaneous combustion, swelling minerals)
 - Solubility (re-cementing of fragments, groundwater contamination)
 - Rapid oxidation (negative impact on recovery)
 - Health and safety of workers (radioactive, fibrous, chemical hazards)
 - Clay/fines generation (risk of mud-rushes and dilution)
 - Downstream processing effects (deleterious elements)
- Effects, and management, of subsidence on surface land-use.

Technical factors are key in method selection. <u>Geology</u> informs the selection criteria.

8

Mining Factors as Input into Targeting/Prospectivity

DMQ: 'MINING-INFORMED EXPLORATION'

- District with multiple Cu-Au mines, lots of smoke, yet only one large mass-mineable deposit (Ernest Henry).
- What are the prospects for discovery of additional mass-mineable deposits if we deepen the search space to 2km depth?....and what would a mineable deposit need to look like at this depth?
- What does history tell us about mining in the district in terms of stress conditions, rock characteristics, geothermal gradient, potential deposit size/grade/orientation/geometry?

DMQ

Understanding deposit characteristics/relationships at mining-field scale

Validate/re-build district scale geoarchitecture

Incorporate mine/shoot-scale controls on mineralization (what differentiates the big deposits within a district?)

Assign Mass-mining specific criteria (geotechnical, local knowledge, preliminary cost analysis)

Search for the right conditions: geo-analogues

Areas of overlap constitute prospective zones for mass-mineable deposits

DMQ Summary

Aiming to reduce the risk profile of exploring at depth in the Cloncurry district by identifying tracts of ground which are:

- prospective for large, mass-mineable mineral deposits, i.e. <u>fertility</u>
- comprise geotechnical, geothermal, geographical conditions which are technically amenable to mass-mining methods, i.e. <u>mineability</u>, and
- comprise all of the above, but with the prospect of positive financial outcomes....subject to internal & external factors, i.e. <u>viability</u>.

SMIBRC WH Bryan Mining & Geology Research Cent

