“Deep Mining Queensland (DMQ) Project….where Exploration meets Mass Mining”

Travis Murphy
DMQ Project Team

Dr Travis Murphy (Exploration and Mine Geology)

Dr Mark Hinman (Exploration and Mine Geology)

Dr Mark Pirlo (Exploration Geochemistry)

John Donohue (Exploration Geophysics)

Mark Jones (Software Engineering & Database Support)

~75 years mining and exploration geoscience experience
BRC: the Mass-Mining Research Niche

- Mass-mining research: Benchmarking, Technology, & Innovation
 - ‘International Caving Study’,
 - ‘Mass Mining Technology 1-3’,
 - ‘Supercaves’,
 - ‘Next Generation Cave Mining’

- The role of Geology in Mass-Mining: retrospective analysis feeding innovative predictive models
 - ‘Geology and Mass Mining’

- Mass-Mining - ‘informed’ exploration
 - ‘Deep Mining Queensland’ (DMQ)
Why Deep?....by Necessity!

Estimated depth to basement for non-bulk mineral deposits in Australia

INDICATIVE DEPTH OF COVER
- Outcrop & Shallow Basement <100m
- Basement depth 100 to 500m
- Basement depth 500 to 1000m
- Basement depth >1000m

Outcropping
- 1-50 Metres
- 51-200 Metres
- >200 Metres

Notes: Excludes Bulk Minerals (such as Bauxite, Coal, and Iron Ore).
Bubble-size refers to size of deposit:
- “Moderate” >100k oz Au, >10kt Ni, >100kt Cu equiv, 250kt Zn+Pb, >5kt U3O8
- “Major” >1M oz Au, >100kt Ni, >1 Mt Cu equiv, 2.5 Mt Zn+Pb, >25 kt U3O8
- “Giant” >5M oz Au, >1 Mt Ni, >5 Mt Cu equiv, 12 Mt Zn+Pb, >125 kt U3O8

Sources: MinEx Consulting © September 2014
Geoscience Australia
Exploring at depth requires a different approach to traditional, shallow exploration; with the likely mining-method informing area selection and target/resource criteria.
Mining Method Selection - Fundamentals

Sublevel Cave

- Geometry/orientation
- Tonnage/production potential
- Required production rate
- Rock mass characteristics
- Depth below surface
- Stress conditions
- Economics: Recoverable metal vs Capital + Operating costs

Reduced optionality if deposit is deep and large and/or low grade
The lower cost extraction methods are less flexible and carry higher technical risk!
Technical Factors Affecting Deep Mass-Mineability

- Orebody geometry/continuity & orientation are critical
- Stress.....works with us in cave mining, but needs to be managed
- Geothermal gradient
- Caveability of the orebody and overburden
- Characteristics of the orebody and overburden:
 - Reactivity (spontaneous combustion, swelling minerals)
 - Solubility (re-cementing of fragments, groundwater contamination)
 - Rapid oxidation (negative impact on recovery)
 - Health and safety of workers (radioactive, fibrous, chemical hazards)
 - Clay/fines generation (risk of mud-rushes and dilution)
 - Downstream processing effects (deleterious elements)
- Effects, and management, of subsidence on surface land-use.

Technical factors are key in method selection. Geology informs the selection criteria.
DMQ: ‘Mining-Informed Exploration’

- District with multiple Cu-Au mines, lots of smoke, yet only one large mass-mineable deposit (Ernest Henry).
- What are the prospects for discovery of additional mass-mineable deposits if we deepen the search space to 2km depth?.....and what would a mineable deposit need to look like at this depth?
- What does history tell us about mining in the district in terms of stress conditions, rock characteristics, geothermal gradient, potential deposit size/grade/orientation/geometry?
Understanding deposit characteristics/relationships at mining-field scale

Validate/re-build district scale geo-architecture

Incorporate mine/shoot-scale controls on mineralization (what differentiates the big deposits within a district?)

Assign Mass-mining specific criteria (geotechnical, local knowledge, preliminary cost analysis)

Search for the right conditions: geo-analogues

Areas of overlap constitute prospective zones for mass-mineable deposits
DMQ Summary

Aiming to reduce the risk profile of exploring at depth in the Cloncurry district by identifying tracts of ground which are:

• prospective for large, mass-mineable mineral deposits, i.e. **fertility**

• comprise geotechnical, geothermal, geographical conditions which are technically amenable to mass-mining methods, i.e. **mineability**, and

• comprise all of the above, but with the prospect of positive financial outcomes....subject to internal & external factors, i.e. **viability**.