

Geophysical, Structural and Mineralogical Signatures of the Cloncurry Mineral System

Jim Austin| 22 May2017 + Ben Patterson, John Walshe, Renee Birchall, Monica leGras, Richard Lilly, Phil Schmidt, Clive Foss, Dean Hillan and Dave Clark

Department of Natural Resources and Mines

Petrophysics Overview

We start with 1 inch cores

- High density, high MagSus, are dominated by coarse MD magnetite, e.g., Osborne, SWAN.
- High density, medium MagSus (e.g., Cormorant, Maronan) may contain magnetite and pyrrhotite.
- High density negligible MagSus contain hex. pyrrhotite, sphalerite, galena, pyrite and hematite,

MagSus vs Density

2 |

Petrophysics Overview

- High MagSus, and low Q ratios are dominated by coarse MD magnetite, e.g., Osborne.
- Low MagSus, and high Q are rich in monoclinic pyrrhotite, e.g., Cormorant, Canteen.
- Deposits with low MagSus, and low Q may contain hexagonal pyrrhotite, pyrite or hematite.

MagSus vs Remanence

AMS (Anisotropy of Magnetic Susceptibility)

- Measureable petrophysical property of rock
- Preferred orientation of crystallographic axes of anisotropic magnetic minerals,
 - i.e., the magnetic fabric.

can be used to:

- Define strain distribution prior to mineralisation
- K3 is generally the shortening direction
- K1/K2 are perpendicular to shortening, define foliation

AMS (Anisotropy of Magnetic Susceptibility)

μCT image of Artemis (ART16C)

AMS can provide information about:

- Strain Fabrics
- Shearing
- Veining (Dilation)
- Sedimentary Banding
- Magma Flow
- Magmatic Settling

Ν

 So you need to know about the mineralogy and the texture to use it effectively

Correlating Structure with Fabric & Mineralogy

• The best way is to image the mineralogy of the same sample you've measured

TIMA (Tescan Integrated Mineral Analyser)

Cloncurry -> 750 samples from ~15 deposits

IOCG & ISCG alteration systems

- hydrothermal mineralization:
 - Highly variable
 - 50 Ma Post-peak metamorphism
 - Synchronous with felsic magmatism
 - Structurally controlled
 - Formed during transition from convergence to transpression then extension
 - Mineralization was associated with a number of different alteration types:

- 1. Pyrrhotite-Calcite Alteration
- 2. Pyrrhotite-Albite Alteration
- 3. magnetite-apatite
- 4. sodic (±calcic) alteration
- 5. Potassic Alteration
- 6. Quartz-Chlorite-Hematite alteration (retrograde)

Oxidised

Reduced

Redox and Geophysics

Gawler IOCGs

Redox & Geophysics

Redox Control on Cu

- Elevated Cu occurs either side of an apparent redox boundary
- transition from magnetite into magnetite-pyrrhotite
- U-rich alteration sits on more oxidized side

Uranium, assoc with Mtdominant Sodic Alteration

Ternary KTU radiometrics

Case Study 1. Ernest Henry Cu-Au (Iron-Oxide Cu-Au deposit)

Sodic Alteration (albite-actinolite magnetite)

- albite-dominated lithologies
- variable amounts of coarse multidomain magnetite as the phase.

Pyrite

Apatite

Clinochlore

Hornblende

 Associated with moderate to high susceptibilities

AMS - Hanging wall (Sodic Alteration)

- SE- dipping shear zone
- South plunging lineation
- Indicating South over north movement
- Shear Fabric is Consistent with the thrust ± jog model (e.g., Valenta, 2000)

Potassic Alteration

- Replacement feldspars (e.g., Albite) by K-Feldspar
- Formation of Iron Sulphides reduces Susceptibility

- K-feldspar alteration is often thought to be associated with hematite (based on the reddish color of the K-feldspar).
- However, magnetite is the dominant magnetic phase.

AMS – Breccia Zone (Potassic Alteration)

- Random AMS in breccia
- No fabric (Isotropic)
- It has destroyed the structural fabrics present
- Potassic alteration (Breccia) overprinted the sodic-calcic alteration
 - Structurally and
 - Metasomatically.

Quartz-calcite-chlorite-hematite alteration

- Late quartz-calcite-chlorite-pyrite-hematite alteration is present in a number of deposits
- associated with copper and/ or molybdenum at Ernest Henry, Canteen, Kalman and Merlin
- most oxidized style observed in the Cloncurry district,
 - as indicated by the presence of pyrite and hematite,
 - rather than pyrrhotite and magnetite
- mineralized samples (with such alteration) sit below the Mt- trend on the density/sus plot.
- iron in magnetite is being converted to;
 - ferromagnesian minerals (e.g., chamosite),
 - chalcopyrite, pyrite and/or hematite during the late alteration history.

AMS – Quartz-Clacite-Chlorite-Hematite

CSIRC

Geophysical evidence

- Vertical derivative of RTP
- This shows 3 parallel magnetic zones coincident with NEoriented shearzones.
- Bounded on each side by north to NNW oriented faults
- Mineralisation is coincident with the intersection of the Nfault and the NE-fabric

Magnetics 1st Vertical derivative of RTP

Inverse Bullseye

- Mineralisation increases on alteration gradient, from Sodic to potassic to hydrolytic alteration
- Mineralisation increases as rocks become more weakly magnetic
- Mineralisation related to oxidation |

Alteration type	Chalcopyrite	Chamosite	Pyrite	Albite	Microcline	Quartz
And-Alb+Potassic+Calcic	0.00	0.82	0.27	7.41	23.54	10.56
Magnetite-Apatite*	3.80	1.84	1.09	1.09	1.09	1.09
Potassic (Bt)	0.00	0.29	0.07	58.79	2.80	8.48
Potassic (Kf)	0.25	2.27	3.38	2.52	45.91	8.22
Potassic+ Cal-Qtz-Py	2.00	1.19	4.03	0.96	31.62	15.88
Qtz-Cal-Chl-Py±Cpp±Hem	2.88	10.26	13.96	0.16	2.70	33.56
Sodic (Ab-Mt-Ti)	0.00	0.31	0.31	54.96	3.73	2.38
Sodic + Potassic (Bt)	0.05	1.12	0.27	20.11	20.00	10.03

Thrust-Jog Model

Structural-Geophysical-Geochemical Model

What else can we do??

After use samples can be also used for

Standard 1 inch paleomag cylinder

- Mineralogy
 Geochemistry
 Hyperspectral
 Conductivity
 - 5. Density
 - 6. Mag Sus
 - 7. Remanence
 - 8. Radiometrics

CSIRC

What WILL we do??

After use samples can be also used for

Standard 1 inch paleomag cylinder

- Mineralogy
 Geochemistry
 Hyperspectral
 Conductivity
 Density
 - 6. Mag Sus
 - 7. Remanence
 - 8. Radiometrics

Exploration significance

- Understanding Zonation can help us discriminate barren vs mineralised geophysical anomalies
- Understanding Redox can help us use geophysics to better map mineral systems
- Understanding the relationships between different geophysical signatures of alteration assemblages can help us target them indirectly
- All of this can help us recognise "near miss" signatures in core

"In theory there is no difference between theory and practice.

In practice there is."

Yogi Berra

