

Julius Kruttschnitt Mineral Research Centre

The Use of Corescan Images in Predicting Breakage Characteristics

Anh Nguyen Prof. Joan Esterle Prof. Emmy Manlapig Dr. Khoi Nguyen

CONTEXT

The traditional visual drill core logging:

- Time consuming
- Prone to inconsistencies (between different logging geologists, different drilling phases / campaigns)
- Poor understanding of processing behaviours

The industry has been moving towards more automated and systematic drill core logging

- Hyperspectral drill core scan systems use VNIR, SWIR and TIR parts of the electromagnetic spectrum to identify minerals
- Each pixel of the digital image contains a reflectance spectrum
- Rapid generation of mineral class map by matching pixel spectrum with mineral spectra library

CORESCAN TECHNOLOGY

- Individual core boxes scanned row by row
- Visible RGB camera, hyperspectral scanner and 3D laser profilometer
- Delivery: web-based imagery (in Coreshed) and composited interval data (csv)

Wavelength range	VNIR and SWIR
Spatial resolution	500 um (spectra) 60 um (RGB visible camera) 150 um (3D laser profiler)
Spectral bands	510
Capacity	~ 5 min / meter

- High resolution hyperspectral imagery
- Core RGB image
- 3D Laser Profiler
- Mineral class map
- Individual mineral maps
- Crystallinity maps

- A range of images for investigation
- Albedo-550nm image can be used to distinguish bright, dull and stone bands

RGB Image	3D Laser Profiler	Mineral class map	Total- Albedo- 550nm

Method Flowsheet

- Matching a classified texture type against a reference (training texture)
- Similar to the process used in remote sensing, facial recognition, etc.

Predict Comminution Behaviour

- Texture analysis potentially provides a more accurate method to capture processing variability compared to using data from visual drill core logging
- With less amount of physical testwork

SMI JKMRC Julius Kruttschnitt Mineral Research Centre Predicted Ab

Litho

580

000

620

Alteration

Predict Coal Breakage Characteristics

- Use albedo values to distinguish stone and coal
- Use texture analysis to quantify banding components:
 - Homogeneous and smooth texture: dull
 - Rough and less homogeneous: bright
- The abundance of bright, dull and stone bands quantified will be used to predict breakage characteristics

Albedo @ 550 .0 nm 0.5

WWW

C4

C2

83 EX

C3

C3

B¥

C3

E¥ ex

C3

C3

C3

£7

Lithotype Profile

-36

- 37

KEY POINTS

Many opportunities that can be considered in the mineral processing space. This presentation explores one area of application of Corescan images in mineral processing (prediction of breakage characteristics)

QUESTIONS?

11