Ernest Henry Halo Exercise

Aims

Understand the inner and outer halo of the Ernest Henry system

Develop familiarity with available products/data

Understand lateral and vertical zoning patterns

- Mineralogy
- Geochemistry
- Petrophysics

Implications for exploration strategies

hapter 3						Ernest Henry	Ernest Henry				Chapte
Hydrothermal Alteration	Mineralogy (vein and alteration)	General Alteration Characteristics	Rock Types	Hydrothermal Styles	Spatial relations to Cu-Au mineralisation	Main Chemical Associations	Figure 3.12. Mineral paragenesis from Mark et al (2006). Line thickness denotes abundance.		Widely preserved outside mine lease	Concentrated around mine lease	Restricte
Pre-ore Sodic alter Albitization	ation albite, titanite, quartz	fine-grained albitization minor titanite, mainly present in altered diorite	volcanie rocks, cale-	pervasive fine-grained alteration, fracture- controlled breccias, veining	Present over whole area, although lack of preserved alteration in the vicinity of the	Na	OUTER HALO	Sodic- Potassic Cycles	Na-Ca alteration Na-Ca alteration Biotite-magnetite alteration Cycle 1	Garnet-rich veining K-feldspr alteration	ar Breccia V
Na-Ca alteration	actinolite.	fine-grained albitization	silicate rocks	E-cotors related	orebody rare in hanging wall rocks and ore breecia clasts Pervasive throughout	Na. Ca	Extent		Na K Sodic-calcic	Cycle 2	Potas
va-ca ageration	tremolite, titanite, diopside albite, scapolite, calcite, apatite magnetite, pyrite, quartz	minor szapolite and diopside alteration minor titanite, mainly present in altered diorite	diorite, plagioclase phyric volcanie rocks, siliciclastic metasedimentary rocks, cale-silicate rocks	hydrothermal breecia, crackle veining, pervasive alteration	term lease, but overprinted by K-feldspar alteration in the vicinity of the ore breccia. Most intense hydrothermal breccias along NE trending fractures	No, Ca	 The widespread cover and regional extent of Na-Ca alteration make it dif- flicult to precisely define the outer halo of the Ernest Henry system. However, the maximum extent of geochemical signatures potentially attributable to 	Albite Biotite Magnetite Amphibole Clinopyroxene			Scrientzation
Magnetite-apatite	magnetite, apatite, actinolite, quartz calcite, quartz	massive fine- to coarse-grained magnetite alteration	plagioclase phyric volcanic rocks	hydrothermal veining, localized pervasive alteration	Present within NE trending fracture systems in the footwall to the deposit	Fe, P, Mg	Ernest Henry (as opposed to regional Na-Ca alteration) is about 2km to the northeast and approximately 1.5km in all other directions	Scapolite Epidote Quartz		immo	
Biotite-magnetite	biotite, magnetite, K-(Ba) feldspar titanite, quartz	pervasive biotite alteration minor fine-grained K-feldspar	plagioclase phyric volcanie rocks, siliciclastic	pervasive alteration, rare veining	Pervasive throughout the term lease, and affects all major rock types	K, Rb, Fe, Ba, Mn, Cl	Geophysical Expression	Pyrite Titenite			
Garnet-K- feldspar-biotite	garnet, biotite, K-feldspar, amphibole quartz, magnetite, pyrite, chalcopyrite	with biotite fine- to medium-grained biotite and garnet alteration	metasedimentary rocks plagioclase phyric volcanic rocks, siliciclastic metasedimentary rocks	hydrothermal breccias, localized crackle veining, local pervasive alteration		Fe, Mn, K, Ba, Cl, Cu, Co	 Whilst the strongest magnetic anoma- lies occur in association with the hang- ingwall shoot and footwall to Ernest Henry and are not laterally continuous, 	Garnet White Mica Carbonate			
S) <i>n-ore</i> C-feldspar	K-(Ba) feldspar, quartz, rutile, calcite	equigranular fine- to medium-grained K-feldspar alteration	plagioclase phyric volcanic rocks, siliciclastic metasedimentary rocks	pervasive alteration of volcanic rocks, veining	Most intense in the vicinity of the orebody, although occurs as crackle veins up to	K, Rb, Ba, Cl, Cu, Co Ni, As	the zone of elevated magnetic signa- ture continues for approximately 1km to the northeast. • Mapping of a zone of elevated pyrite	K-feldspar Sphalerite Arsenopyrite Chalcopyrite	_		_
Sericite	sericite, quartz	pervasive fine- to medium-grained white mica alteration of K-feldspar altered volcanic rocks	diorite, cale-silicate rocks plagioclase phyric volcanic rocks	pervasive alteration, localized crackle veining	2 kilometres from the orebody Overprints K-feldspar altered volcanic rocks, within 400 m of the orebody	К, Н	extending approximately 1.5km to the north of Ernest Henry and approximate- ly 1km to the south suggests that the halo should be detectable through IP surveving	Fluorite Apatite Hematite			
f b a c	on sagnetite, pyrite, calcite biotite, K-(Ba) feldspar, chalcopyrite, barite, molybdenite, arsenopyrite, quartz, electrum, garnet, amphibole, rutile sphal galena, coffinite, mona	e, equigranular K-felds alteration minor bid alteration minor ga and amphibole alter in cale-silicate rocks minor arsenopyrite pyrite alteration in	rnet cale-silicate rocks, ation siliciclastic metasedimentary	infill-supported hydrothermal breccia, distal crackle veining, distal alteration	Exhibits localization from inner ore breccia to outer crackle veining Elevated Co, As and S up 150 m from ore breccia	Ca, C, Sr, Co, As, Mo,	 While the strongest local gravity anomaly occurs associated with the Ernest Henry ore system, the belt of Mount Fort Constantine Volcanics extending to the northeast also defined a gravity high. 	Molybdenite Barite	MagnetiteStage 1	Stage 2	> Hema
ate veining K	acina, comnite, mona (-(Ba) feldspar, magne pyrite, chalcopyrite, flu molybdemite, calcite, g quartz, barite, rutile	metasedimentary ro tite, no demonstrable torite, alteration	cks Stage 1 ore breccia		No demonstrable core- margin zonation within ore breccia able 3.1. Summary of tion characteristics, fro		 The 100-150m, 150-200m and 200- 300m depth slices of the recently released Isa East airborne EM survey highlight Ernest Henry and the sur- rounding region as containing conduc- 				
24 1000 mM	91			N N N		······································	tive sources, though it is unclear wheth- er this response is related in any way to surface infrastructure associated with the mine. The survey aircraft increased attitude to more than 400m over the pit and infrastructure.	7741000 mN			A POP
40000 mN				500m 1km			Exploration Geochemistry Lilly et al (2014) also reported multi-el- ement MMI anomalies in Cu and Mo associated with a zone 4km to the northeast of Ernest Henry, and MMI surveying over the similarly-covered E1 deposit to the southeast of Ernest Henry showed distinct MMI anomalles in Aq, Au, Cu, Co, Mo, Mn and U.	77/9000 mN		- Shear	500m
739000 mN			N Ches	e Enhair						✓ Shear	
73,000 mM	Ernest	termy	Sheal Inter	r Fabric preted Fault hell Shell				7738000 mN	Ernest Henry 5% pyrite 10% pyrite	Interpretation of the control of the	preted Fault shell Shell Shell par Alteration Sediments Granodiorite ted rock altered)

3.2 Element and mineral distributions in drill hole EH691

The distributions of anomalous metals in EH691 are shown in Figure 5 and distributions of major and minor mineral phases determined from TIMA scans are presented in Figure 6 through Figure 8. The mineralogical abundance data was obtained from 49 samples collected at ~12 m intervals over ~560 m of diamond drill core.

The mineralized zone is associated with K-feldspar alteration in contrast to a zone of albite alteration in the hanging wall and andesine alteration in the footwall (Figure 7). The mineralised interval of EH691 (~730 – 950 m) is enriched in Cu-Fe-S \pm Co \pm Ni \pm As. Several distinct zones of Fe, As, Co and Ni enrichment occur across the mineralised zone but the better grades of Ni, S and Co occur between ~730 – 800 m towards hanging wall side of the orebody. Arsenopyrite, cobaltite and gersdorffite were identified in this 730 – 800 m zone (Figure 8). There is a broad negative correlation between S abundance and K-feldspar across the whole mineralised zone. The distribution of pyrite with respect to chalcopyrite reflects the S enrichment, occurring on the upper margins of the mineralized zone at ~720 –760 m (Figure 6). Muscovite and chamosite also occur in this zone (Figure 7) as does barite, apatite and hornblende (Figure 8).

Figure 5: S, Cu, Fe, As, Ni and Co abundances in drill hole EH691 from the EHM dataset.

Figure 6: Mineral abundances in drill hole EH691 (vol.%) determined from TIMA scans: chalcopyrite, sum Feminerals, pyrite, iron oxide (hematite-magnetite), rutile, titanite, quartz, ilmenite.

14 | The Ernest Henry Cu-Au deposit The Ernest Henry Cu-Au deposit | 15

Figure 27: Schematic showing the approximate position of drill hole EH 691 relative to the Ernest Henry ore body, after Mark et al (2005).

9

The other main magnetised zone within the mine area corresponds to the hanging wall shear and in part the breccia body. It has a more subtle magnetic expression due to its lower magnetic susceptibility (~0.5 SI) and more widespread and zoned distribution. In contrast to the highly magnetised discrete zones that coincide with the Marshall and Footwall shear zones, this central part of the anomaly is relatively smooth which reflects both the more rounded shape and diffuse boundaries of the zone and also the magnetic zonation within the body, from ~0.7 – 0.4 SI. There is little by way of petrophysical contrast to isolate the anomaly caused by the hanging wall shear zone from the breccia zone, and hence they are modelled as one here.

Figure 37: 3-D perspective of the Ernest Henry magnetic model generated in ModelVision™. View is toward the NE.

48 | The Ernest Henry Cu-Au deposit

Figure 38: 3-D perspective of the Ernest Henry magnetic model, with the surface topography and drill hole sampled in this project is shown for reference. View is toward the west.

The ore body was modelled by matching the architecture of the pipe, to the Leapfrog[™] shells for Cu, Au and Fe. Using this method it was determined that the actual ore-pipe made almost no contribution to the magnetic anomaly, due mainly to its limited spatial extent. However, it is likely that the ore body does have a relatively low susceptibility compared with many of the adjacent rocks, because it is relatively rich in non- or weakly magnetic sulphides, whereas much of the surrounding rock is relatively rich in magnetite. It was necessary to give the mineralised pipe a low susceptibility (<0.15 5) in order to ensure that it did not create a false anomaly.

Once a model that fits the constraints imposed, and also provides an adequate fit to the magnetic data and the geology was generated, the model was tested against the gravity data. Once reasonable densities, based on measurement in this study, were attributed to the magnetic bodies and the regional (background) gradient was adjusted, a reasonably good match to the gravity data was achieved using bodies from the pre-existing magnetic model.

The main adjustments required were to extend the hanging wall shear/ breccia zone further to the east. This indicates perhaps that this part of the breccia is of comparable density, but with significantly less magnetite. This is consistent with the observation by Keys (2008) that mineralisation and Fe-oxide alteration sit on a west to east gradient across the deposit. Keys (2008) inferred further that the fluids were channelled toward the east, from a source to the west of the deposit (i.e., the NNW-trending). The foot wall shear was also extended both NE and SW, but with much lower susceptibility, and a second sub-parallel magnetised/dense sub-tabular body was added to reflect another shear zone to the north. These relatively simple adjustments were all that was

The Ernest Henry Cu-Au deposit | 49