Ernest Henry Halo Exercise ## Aims Understand the inner and outer halo of the Ernest Henry system Develop familiarity with available products/data Understand lateral and vertical zoning patterns - Mineralogy - Geochemistry - Petrophysics Implications for exploration strategies | hapter 3 | | | | | | Ernest Henry | Ernest Henry | | | | Chapte | |-------------------------------------|--|---|---|---|--|--|--|--|---|--|---| | Hydrothermal
Alteration | Mineralogy
(vein and
alteration) | General Alteration
Characteristics | Rock Types | Hydrothermal Styles | Spatial relations to
Cu-Au mineralisation | Main Chemical
Associations | Figure 3.12. Mineral paragenesis from Mark et al (2006). Line thickness denotes abundance. | | Widely preserved outside
mine lease | Concentrated around mine lease | Restricte | | Pre-ore Sodic alter
Albitization | ation
albite, titanite,
quartz | fine-grained albitization
minor titanite, mainly
present in altered diorite | volcanie rocks, cale- | pervasive fine-grained
alteration, fracture-
controlled breccias,
veining | Present over whole area,
although lack of
preserved alteration in
the vicinity of the | Na | OUTER HALO | Sodic-
Potassic
Cycles | Na-Ca alteration Na-Ca alteration Biotite-magnetite alteration Cycle 1 | Garnet-rich veining K-feldspr
alteration | ar Breccia V | | Na-Ca alteration | actinolite. | fine-grained albitization | silicate rocks | E-cotors related | orebody rare in hanging
wall rocks and ore
breecia clasts
Pervasive throughout | Na. Ca | Extent | | Na K
Sodic-calcic | Cycle 2 | Potas | | va-ca ageration | tremolite, titanite,
diopside albite,
scapolite, calcite,
apatite magnetite,
pyrite, quartz | minor szapolite and
diopside alteration
minor titanite, mainly
present in altered diorite | diorite, plagioclase phyric
volcanie rocks,
siliciclastic
metasedimentary rocks,
cale-silicate rocks | hydrothermal breecia,
crackle veining,
pervasive alteration | term lease, but
overprinted by
K-feldspar alteration in
the vicinity of the ore
breccia. Most intense
hydrothermal breccias
along NE trending
fractures | No, Ca | The widespread cover and regional
extent of Na-Ca alteration make it dif-
flicult to precisely define the outer halo
of the Ernest Henry system. However,
the maximum extent of geochemical
signatures potentially attributable to | Albite Biotite Magnetite Amphibole Clinopyroxene | | | Scrientzation | | Magnetite-apatite | magnetite, apatite,
actinolite, quartz
calcite, quartz | massive fine- to
coarse-grained
magnetite alteration | plagioclase phyric
volcanic rocks | hydrothermal veining,
localized pervasive
alteration | Present within NE
trending fracture systems
in the footwall to the
deposit | Fe, P, Mg | Ernest Henry (as opposed to regional
Na-Ca alteration) is about 2km to the
northeast and approximately 1.5km in
all other directions | Scapolite Epidote Quartz | | immo | | | Biotite-magnetite | biotite, magnetite,
K-(Ba) feldspar
titanite, quartz | pervasive biotite
alteration minor
fine-grained K-feldspar | plagioclase phyric
volcanie rocks,
siliciclastic | pervasive alteration, rare
veining | Pervasive throughout the
term lease, and affects all
major rock types | K, Rb, Fe, Ba, Mn, Cl | Geophysical Expression | Pyrite
Titenite | | | | | Garnet-K-
feldspar-biotite | garnet, biotite,
K-feldspar,
amphibole quartz,
magnetite, pyrite,
chalcopyrite | with biotite
fine- to medium-grained
biotite and
garnet alteration | metasedimentary rocks
plagioclase phyric
volcanic rocks,
siliciclastic
metasedimentary rocks | hydrothermal breccias,
localized crackle veining,
local pervasive alteration | | Fe, Mn, K, Ba, Cl, Cu, Co | Whilst the strongest magnetic anoma-
lies occur in association with the hang-
ingwall shoot and footwall to Ernest
Henry and are not laterally continuous, | Garnet White Mica Carbonate | | | | | S) <i>n-ore</i>
C-feldspar | K-(Ba) feldspar,
quartz, rutile,
calcite | equigranular fine- to
medium-grained
K-feldspar alteration | plagioclase phyric
volcanic rocks,
siliciclastic
metasedimentary rocks | pervasive alteration of
volcanic rocks, veining | Most intense in the
vicinity of the orebody,
although occurs as
crackle veins up to | K, Rb, Ba, Cl, Cu,
Co Ni, As | the zone of elevated magnetic signa-
ture continues for approximately 1km to
the northeast. • Mapping of a zone of elevated pyrite | K-feldspar
Sphalerite
Arsenopyrite
Chalcopyrite | _ | | _ | | Sericite | sericite, quartz | pervasive fine- to
medium-grained white
mica alteration of
K-feldspar altered
volcanic rocks | diorite, cale-silicate rocks
plagioclase phyric
volcanic rocks | pervasive alteration,
localized crackle
veining | 2 kilometres from the
orebody
Overprints K-feldspar
altered volcanic rocks,
within 400 m of the
orebody | К, Н | extending approximately 1.5km to the
north of Ernest Henry and approximate-
ly 1km to the south suggests that the
halo should be detectable through IP
surveving | Fluorite Apatite Hematite | | | | | f
b
a
c | on sagnetite, pyrite, calcite biotite, K-(Ba) feldspar, chalcopyrite, barite, molybdenite, arsenopyrite, quartz, electrum, garnet, amphibole, rutile sphal galena, coffinite, mona | e, equigranular K-felds
alteration minor bid
alteration minor ga
and amphibole alter
in cale-silicate rocks
minor arsenopyrite
pyrite alteration in | rnet cale-silicate rocks,
ation siliciclastic
metasedimentary | infill-supported
hydrothermal breccia,
distal crackle veining,
distal alteration | Exhibits localization from
inner ore breccia to outer
crackle veining Elevated
Co, As and S up 150 m
from ore breccia | Ca, C, Sr, Co, As, Mo, | While the strongest local gravity anomaly occurs associated with the Ernest
Henry ore system, the belt of Mount
Fort Constantine Volcanics extending
to the northeast also defined a gravity
high. | Molybdenite
Barite | MagnetiteStage 1 | Stage 2 | > Hema | | ate veining K | acina, comnite, mona
(-(Ba) feldspar, magne
pyrite, chalcopyrite, flu
molybdemite, calcite, g
quartz, barite, rutile | metasedimentary ro
tite, no demonstrable
torite, alteration | cks
Stage 1 ore breccia | | No demonstrable core-
margin zonation within
ore breccia
able 3.1. Summary of
tion characteristics, fro | | The 100-150m, 150-200m and 200-
300m depth slices of the recently
released Isa East airborne EM survey
highlight Ernest Henry and the sur-
rounding region as containing conduc- | | | | | | 24 1000 mM | 91 | | | N N N | | ······································ | tive sources, though it is unclear wheth-
er this response is related in any way to
surface infrastructure associated with
the mine. The survey aircraft increased
attitude to more than 400m over the pit
and infrastructure. | 7741000 mN | | | A POP | | 40000 mN | | | | 500m 1km | | | Exploration Geochemistry Lilly et al (2014) also reported multi-el- ement MMI anomalies in Cu and Mo associated with a zone 4km to the northeast of Ernest Henry, and MMI surveying over the similarly-covered E1 deposit to the southeast of Ernest Henry showed distinct MMI anomalles in Aq, Au, Cu, Co, Mo, Mn and U. | 77/9000 mN | | - Shear | 500m | | 739000 mN | | | N Ches | e Enhair | | | | | | ✓ Shear | | | 73,000 mM | Ernest | termy | Sheal Inter | r Fabric
preted Fault
hell
Shell | | | | 7738000 mN | Ernest Henry 5% pyrite 10% pyrite | Interpretation of the control | preted Fault shell Shell Shell par Alteration Sediments Granodiorite ted rock altered) | ## 3.2 Element and mineral distributions in drill hole EH691 The distributions of anomalous metals in EH691 are shown in Figure 5 and distributions of major and minor mineral phases determined from TIMA scans are presented in Figure 6 through Figure 8. The mineralogical abundance data was obtained from 49 samples collected at ~12 m intervals over ~560 m of diamond drill core. The mineralized zone is associated with K-feldspar alteration in contrast to a zone of albite alteration in the hanging wall and andesine alteration in the footwall (Figure 7). The mineralised interval of EH691 (~730 – 950 m) is enriched in Cu-Fe-S \pm Co \pm Ni \pm As. Several distinct zones of Fe, As, Co and Ni enrichment occur across the mineralised zone but the better grades of Ni, S and Co occur between ~730 – 800 m towards hanging wall side of the orebody. Arsenopyrite, cobaltite and gersdorffite were identified in this 730 – 800 m zone (Figure 8). There is a broad negative correlation between S abundance and K-feldspar across the whole mineralised zone. The distribution of pyrite with respect to chalcopyrite reflects the S enrichment, occurring on the upper margins of the mineralized zone at ~720 –760 m (Figure 6). Muscovite and chamosite also occur in this zone (Figure 7) as does barite, apatite and hornblende (Figure 8). Figure 5: S, Cu, Fe, As, Ni and Co abundances in drill hole EH691 from the EHM dataset. Figure 6: Mineral abundances in drill hole EH691 (vol.%) determined from TIMA scans: chalcopyrite, sum Feminerals, pyrite, iron oxide (hematite-magnetite), rutile, titanite, quartz, ilmenite. 14 | The Ernest Henry Cu-Au deposit The Ernest Henry Cu-Au deposit | 15 Figure 27: Schematic showing the approximate position of drill hole EH 691 relative to the Ernest Henry ore body, after Mark et al (2005). 9 The other main magnetised zone within the mine area corresponds to the hanging wall shear and in part the breccia body. It has a more subtle magnetic expression due to its lower magnetic susceptibility (~0.5 SI) and more widespread and zoned distribution. In contrast to the highly magnetised discrete zones that coincide with the Marshall and Footwall shear zones, this central part of the anomaly is relatively smooth which reflects both the more rounded shape and diffuse boundaries of the zone and also the magnetic zonation within the body, from ~0.7 – 0.4 SI. There is little by way of petrophysical contrast to isolate the anomaly caused by the hanging wall shear zone from the breccia zone, and hence they are modelled as one here. Figure 37: 3-D perspective of the Ernest Henry magnetic model generated in ModelVision™. View is toward the NE. 48 | The Ernest Henry Cu-Au deposit Figure 38: 3-D perspective of the Ernest Henry magnetic model, with the surface topography and drill hole sampled in this project is shown for reference. View is toward the west. The ore body was modelled by matching the architecture of the pipe, to the Leapfrog[™] shells for Cu, Au and Fe. Using this method it was determined that the actual ore-pipe made almost no contribution to the magnetic anomaly, due mainly to its limited spatial extent. However, it is likely that the ore body does have a relatively low susceptibility compared with many of the adjacent rocks, because it is relatively rich in non- or weakly magnetic sulphides, whereas much of the surrounding rock is relatively rich in magnetite. It was necessary to give the mineralised pipe a low susceptibility (<0.15 5) in order to ensure that it did not create a false anomaly. Once a model that fits the constraints imposed, and also provides an adequate fit to the magnetic data and the geology was generated, the model was tested against the gravity data. Once reasonable densities, based on measurement in this study, were attributed to the magnetic bodies and the regional (background) gradient was adjusted, a reasonably good match to the gravity data was achieved using bodies from the pre-existing magnetic model. The main adjustments required were to extend the hanging wall shear/ breccia zone further to the east. This indicates perhaps that this part of the breccia is of comparable density, but with significantly less magnetite. This is consistent with the observation by Keys (2008) that mineralisation and Fe-oxide alteration sit on a west to east gradient across the deposit. Keys (2008) inferred further that the fluids were channelled toward the east, from a source to the west of the deposit (i.e., the NNW-trending). The foot wall shear was also extended both NE and SW, but with much lower susceptibility, and a second sub-parallel magnetised/dense sub-tabular body was added to reflect another shear zone to the north. These relatively simple adjustments were all that was The Ernest Henry Cu-Au deposit | 49