

Geophysical, Structural and Mineralogical Signatures of the Cloncurry Mineral System

Jim Austin| 21 March 2019 + Ben Patterson, John Walshe, Renee Birchall, Monica leGras, Michael Gazley, Vladimir Lisitsen, Courteney Dnararham, Paul Donchak + UQ +CODES.

Department of Natural Resources and Mines

Ground we'll cover today

- To give you all an idea of the approach we're taking with the Cloncurry Mineral System.
 - 1. Overarching Goals
 - 2. Sampling Conducted thus far
 - 3. Techniques being used
 - 4. Preliminary Results

Data "Integration"

- We're entering a new era of data-driven "science", but
- we have huge problems with data integration in geoscience
- Our datasets were never designed to be integrated
- Geoscientific data is different from most other data:

Main issues

Regional Magnetics

Transformations

- 1. dimensionality,
- 2. scale and scalability.
- 3. spatial resolution

Progress

5 | Presentation title | Presenter name

Petrophysics – Legacy Data

DEPOSIT	Num of Specimens	Conductivity		Num of	Radiometrics				
		КТ10	KT20 (100kHz)	Samples	RS-332				
Altia	59	Y	Y	30	Y	Р]		In Progress
Artemis	56	Y	Y	22	Y	Р			Completed
Barbara	21	Y	Y	7	Y	Р		Y	Data imported to spreadsheet
Brumby	72		Y	38	Y	Р		Р	Partial import
Cam River	84	Y	Y	42	Y	Р			
Canteen	96	Y	Y	48	Y	Р			
Cormorant	117	Y	Y	45	Y	Р			
E1	36	Y	Y	18	Y	Р			
E1-Surface	80		Y	34	Y	Р			
EHM	81	Y	Y	41	Y	Р			
Great Aus	59	Y	Y	22	Y	Р			
Kalman	45	Y	Y	21	Y	Р			
Kulthor	56	Y	Y	28	Y	Р			
Little Eva	22	Y	Y	11	Y	Р			
Maronan	66	Y	Y	33	Y	Р			
Merlin	31	Y	Y	16	Y	Р			
Monakoff	31	Y	Y	16	Y	Р			
Mt Colin	32	Y	Y	11	Y	Р			
Osborne	77		Y	34	Y	Р			
Starra	52		у	26	Y	Р			
SWAN	125	Ŷ	Y	49	Y	Р]		
Trekelano	44	Y	Y	22	Y	Р			

1935	786	Total Number of Specimens/Samples @ North Ryde
1342	0	Number to be Measured (total - OSB,STA,EH/EHM)
1265	786	Currently Measured
94%	100%	% Complete
CONDUCTIVITY	RADIOMETRICS	

Ernest Henry Sampling (east)

CSIRO

7 | Presentation title | Presenter name

Ernest Henry Sampling (south)

8 | Presentation title | Presenter name

Cannington Downhole Sampling (east)

Starra Surface sampling

Starra Downhole sampling

Techniques

14 | Presentation title | Presenter name

Mineralogy with integrated Textural/Fabric Mapping

Correlating Structure with Fabric & Mineralogy

TIMA (Tescan Integrated Mineral Analyser)

• The best way is to image the mineralogy and the texture of the same sample you've measured

MAIA Mapper Data

Co in Red, As in Green and Fe in blue

Explanation

You can see that the As and Co go together for much of the history resulting in the pink colour (red + blue). There are some really bright spots in the middle of the pyrites which are probably cobaltite (CoAsS) around which it looks like the pyrites have nucleated.

Louise and I had a go at inventing a story last week and it goes something like this (using the colours from the Co As Fe image):

Growth of cobaltite and possibly arsenopyrite (some of the internal, yellow, zones of high Co and As look a bit like arsenopyrite crystal shapes)

Cooling destabilises arsenopyrite to pyrite + As so the As (+Co) bearing pyrite is grown (with decreasing As content – yellow à red pyrite)

Continued cooling results in magnetite being stable at the expense of pyrite, perhaps with a change in S/O fugacity – we'd need to draw a phase diagram! This is when the red pyrite is resorbed to produce the tatty looking edges on that zone

Breakdown of amphibole produces releases Fe and Ni (in the As Ni Co image there are bright green phases that we think are actinolite) which allows (with sufficient S present already) the growth of the new, euhedral Ni-bearing pyrite (blue and green zoning in the CoAsFe image).

This is our working story but it would need some further investigation.

Also relevant for your meeting is that this sample was one of the ones that I took to Maia Map before Jeff lasered it so we can work together with CODES on this. I would be interested on any feedback that they have.

Quantifying Strain Conditions

AMS (Anisotropy of Magnetic Susceptibility)

- Measureable petrophysical property of rock
- Preferred orientation of crystallographic axes of magnetite /pyrrhotite.
 - i.e., the magnetic fabric.
- Can be used to Define strain distribution prior to mineralisation

AMS can provide information about:

- Strain Fabrics
- Shearing
- Veining (Dilation)
- Sedimentary Banding
- Magma Flow
- Magmatic Settling

• So you need to know about the mineralogy and the texture to use it effectively

AMS (Anisotropy of Magnetic Susceptibility)

Thrust-Jog Model

- This is really telling us about the pre-mineralisation rheology
- The magnetite post-dates the shearzone (metasomatic replacement)
- Shearzone localises magnetite, but not an active structural control on metal
- Structural controls were upright N-S features that formed in brittle conditions

CSIRC

26 | Uncover Cloncurry AMS

Structural Controls

- Fluid Pathway(s)
 - from deep crust/mantle
 - Surface oxidized fluids
- Host
 - Structurally weak zone
 - Permeable Horizon
- Plumbing System
 - Pressure Valves
 - Facilitate precipitation
- Must consider rheological context
- Must consider permeability

Mapping Redox Gradients... with Geophysics

Redox & Geophysics

Intermediate = High Sus

Geophysical Variability – Sus vs Density

Redox

Low Susceptibility

Blind Targets – (non-weakly magnetic)

Influence of data resolution

• How many deposits can we hide in 2km spaced gravity????

Structural–Geochemical–Geophysical Model

Redox

Reduced = High Remanence

Issues using remanence to map Pyrrhotite

Monoclinic pyrrhotite is associated with

high Koenigsberger ratios.

- (e.g., Canteen, Cormorant, Maronan, Mt Colin)
- remanence directions are
- sub-vertical upward in a similar orientation to the inducing Field.
- They look similar to induced anomalies

Ternary KTU radiometrics

Redox Control on Cu

- Elevated Cu occurs either side of an apparent redox boundary
- transition from magnetite into magnetite-pyrrhotite
- U-rich alteration sits on more oxidized side

Uranium, assoc with Mtdominant Sodic Alteration

New Radiometrics Data

CSIRC

U2/K ratio

New Downhole Magnetic Data

Starra 276 - High Res Mag Sus

Reading movAVG 3 movAVG 5

STQ1095

- Deep levals
 - Spatial coincidence of S, Fe Cu and Au

200

250

300

- Sulphides sit in High Sus zone
- Indicates Intermediate redox

CSIRO

50

100

150

Amphibolite

10000

5000

0

Summary

SIRC

"In theory there is no difference between theory and practice.

In practice there is."

Yogi Berra

57 | the Facts and the Truth