Late Paleozoic gold mineral systems in north-east Queensland

Recent geochronology and metallogenic research

Vladimir Lisitsin
Geological Survey of Queensland

Townsville, 5 June 2019
Outline

- Summary of geochronological and metallogenic research of the past 5-7 years (mostly funded by GSQ)
- Focus – on Carboniferous to Permian gold metallogeny of north-east Queensland
Acknowledgements

Summary of work, performed or funded by GSQ, in collaboration with:

- Klondike Exploration (Gregg Morrison)
- Terra Search (Simon Beams and staff)
- JCU (Zhaoshan Chang, Paul Dirks, staff, post-docs and students)
- Geoscience Australia (U-Pb and Re-Os geochronology)
- ANU (Ar-Ar geochronology – G. Lister, M. Forster)
- University of Alberta, Canada (Re-Os geochronology – Rob Creaser)
- Scottish Universities (O isotopes)
- Multiple companies across the region (access to sites; co-funding research students)
North-eastern segment of the North Australian Craton

Along the cratonic margin

- Neoproterozoic-Ordovician Thomson Orogen
- Silurian to Devonian Mossman Orogen
- Devonian to Triassic New England Orogen (NEO)

In Carboniferous-Permian, all provinces N and W of NEO were affected by felsic magmatism of the Kennedy Igneous Association (KIA)
KIA – extensive felsic magmatism, north and inboard from NEO

Several epochs – from ~345 Ma to 265 Ma:

(i) early Carboniferous (345-330 Ma) - restricted

(ii) late Carboniferous (325-290 Ma) – most volume

(iii) early to mid-Permian (285-265 Ma) – widest spatial extent; main magmatism in the E and N
Diverse C-P mineralisation – mostly coinciding in age with KIA (345-280-265 Ma)

- **Au**(-Ag), **Sn**, **W**, Zn, Cu, Fe, U
- Veins, breccias, skarns; orogenic, low- and high-S epithermal, IRGD, etc.
- Pre-2014 – paucity of geochronology on mineralisation away from several major deposits

Kennedy Igneous Association – C-P mineral province

- U-Pb (zircon; SHRIMP – GA) >20
- Re-Os (molydenite) >25
- Ar-Ar >65
- U-Pb (zircon; LA - JCU) >150
- K-Ar (Terra Search) >40
Carboniferous-Permian mineral systems

- Diverse C-P mineralisation – mostly coinciding in age with KIA (345-280-265 Ma)
- **Au**(-Ag), **Sn**, **W**, Zn, Cu, Fe, U
- Veins, breccias, skarns
- The largest (and best studied) deposits – in the south
- Least understood – at Cape York
Relatively minor historic goldfields (2 – with current exploration projects):

- Horn Island (~0.8 t Au production; 15 t Au resource)
- Coen (~1.5 t Au)
- Ebagoola (~800 kg Au)
- Yarraden (~550 kg Au)
- Alice River

Minor Sn-W (mostly alluvial):

- Archer River (314 t Sn)
Horn Island gold mine (800 kg Au production, 15 t Au resource)

- Until recent geochronological work by GSQ (and GA), both igneous rocks and Au assumed to be early Permian or “Permo-Carboniferous”
Horn Island gold deposit

- Horn Island gold mine (800 kg Au production, 15 t Au resource)
- Until recent geochronological work by GSQ, both igneous rocks and Au assumed to be early Permian or “Permo-Carboniferous”
- Dominant mineralisation – Qtz-Py-Ga-Sp-Au veins in granite (with sericite alteration), rare Qtz-Mo veins; late-stage carbonate-fluorite and epithermal quartz veins
Horn Island gold deposit

- U-Pb (SHRIMP) on host granites – 343-344 Ma
- Re-Os on Qtz-Mo veins – 342-344 Ma
- Ar-Ar on sericite alteration and veins (with Qtz-Ga-Sp-Au) – ~315-320 Ma
- $\delta^{18}\text{O}_{VSMOW}(\text{Qtz}) = 11\%$ (magmatic source?)
- U-Pb (SHRIMP) on (mostly) barren rhyolite dyke – 310 Ma
- Main Au – late Carboniferous, unrelated to host granites (and associated minor Mo-W-Bi-Te mineralisation)

New geological interpretation (incorporating above results) – in ASX announcement of Alice Queen Ltd (31 May 2019)
C-P gold mineral systems – Cape York

Relatively minor historic goldfields (2 – with current exploration projects):

- Horn Island (~0.8 t Au production; 15 t Au resource)
- Coen (~1.5 t Au)
- Ebagoola (~800 kg Au)
- Yarraden (~550 kg Au)
- Wenlock (~150 kg Au)
- Alice River

Minor Sn-W (mostly alluvial)

- Archer River (314 t Sn)
Gold mineral systems – Coen region

- Qtz-Py-Asp-Au(±Ga) veins in PR metamorphics, D granites and rhyolite dykes; sericite alteration; Au-Ag-As±Sb(Pb-Zn) geochemistry

- “Shear-hosted”? D and P-C?

- Until recent geochronological work by GSQ, no reliable age constraints on gold mineralisation
Geochronology – Coen region

- U-Pb SHRIMP on felsic dykes hosting Au – 283-285 Ma
- Broadly synchronous with the Wolverton Granite (280.4 ± 1.5 Ma) and a rhyolitic plug at Spion Kop (281.6 ± 3.9 Ma)
- Ar-Ar on pervasive sericite in rhyolite dykes with Au mineralisation – ~280Ma
- Ar-Ar on muscovite in Au and W veins – ~275 Ma
- $\delta^{18}O_{\text{VSMOW}}(\text{Qtz}) = 0\%$-$5\%$ (meteoric) to 13%-15% (distal magmatic?)
- Early Permian metallogenic event – correlating with epithermal Au at Georgetown and Mt Carlton
C-P gold mineral systems – Cape York

Two distinct mineral systems:

- Late Carboniferous (~315 Ma)
 IRGS at Horn Island
- Early Permian (~275 Ma)
 Epithermal Au in the Coen region
Diverse C-P mineralisation – mostly coinciding in age with KIA (345-280-265 Ma)

- **Au** (-Ag), **Sn**, **W**, **Zn**, **Cu**, **Fe**, **U**

- The largest C-P gold deposits NE QLD
Orogenic gold – Mossman Orogen

- Multiple orogenic Au deposits – in the Hodgkinson and Broken River provinces
- Qtz-Py-Asp-(Sb)-Au veins and stockworks (Au-As-Sb-W geochemistry)
Orogenic gold – Ar-Ar geochronology

15 Ar-Ar dates on sericite alteration indicate Carboniferous age:

- ~330-350 Ma (refractory Au-Sb)
- 300-310 Ma (Au-Qtz vein)
- 280 Ma (minor Au-Qtz vein) – one deposit ‘off-trend’
- Age span and episodes – the same as the KIA
Au-Cu and Zn-Cu-Pb-Zn mineral systems – Chillagoe district

Carboniferous Zn-Cu skarns, Au-Cu porphyry – genesis, relationships?

Peter Illig (PhD), 2016-
Mungana Au and Zn-Cu-Pb-Zn mineral systems

- Zn-Cu skarn – 335 Ma
- Au porphyry (IRGD) – 317 Ma

Peter Illig, 2017
Gold mineral systems – Georgetown

- A variety of styles (and previously often assumed ages)
- Devonian orogenic Au; Carboniferous IRGS; Carboniferous (?) porphyry Cu; Permian (?) epithermal Au
Gold mineral systems – Georgetown

Morrison, Mustard, Cody, 2017
Most deposits – Devonian ‘plutonic’ (≡ orogenic); Au-Bi-Te-Pb-Zn-As – suggesting magmatic inputs

Intrusion-related: early Carboniferous (Kidston) and early Permian

Epithermal – early Permian (Agate Creek)
Two distinct Au mineral systems, distinguishable by geochemistry:

- Devonian orogenic (Au-Ag-Pb-Zn-Cu)
- Carboniferous intrusion-related (Au-As-Te-Bi-Cu-Pb-Zn-Ag-Sb(Mo-W), km-scale zonation)
Extensive new geochronology confirmed distinct metallogenic events:

- Porphyry Cu-Mo (~425 Ma)
- Orogenic Au (~415 Ma)
- Intrusion-related Au (330-320 Ma in the W; 310-290 Ma in the E)

Beams, Morrison, 2017
Gold mineral systems – northern Bowen Basin and Urannah

Isaac Corral, 2017
Gold mineral systems – northern Bowen Basin
High- and Low-sulphidation deposits – Mt Carlton district

- Herbert Creek East: 270 ± 7 Ma
- MCU: 278 ± 6 Ma
- MCU: 285 ± 7 Ma
- Boundary: 254 ± 5 Ma
- Mt Carlton: ~283; 279-277 Ma
- Capsize: Mo 286±1 Ma
- Castle: 266 ± 6 Ma
- Strathmoore: 267 ± 7 Ma
- Ortiz: 256 ± 6 Ma
- Powerline: 239 ± 5 Ma
- Powerline: 235 ± 5 Ma
- Mt. Herbert East: 262 ± 6 Ma

Isaac Corral, 2017
The Paleozoic Mount Carlton Deposit, Bowen Basin, Northeast Australia: Shallow High-Sulfidation Epithermal Au-Ag-Cu Mineralization Formed During Rifting

Fredrik Sahlström,1,2 Paul Dirks,1 Zhaoxian Chang,1 Antonio Arribas,1,3 Isaac Cornal,1 Matthew Ohri-Yeboah,3 and Chris Hall2

1Economic Geology Research Centre (EGRU), College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
2Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, USA
3Evolution Mining, Mt. Carlton Operations, Garbutt, Queensland 4814, Australia

Abstract

Mount Carlton is a Paleozoic high-sulfidation epithermal deposit located in the northern segment of the Bowen Basin, northeast Queensland, Australia. The deposit is hosted in Early Permian volcanic and sedimentary rocks, and an open-pit mining operation includes the Au-rich V2 pit in the northeast and the Ag-rich A39 pit in the southwest. Mineralization at Mt. Carlton occurred during active rifting, partly contemporaneously with the deposition of volcanic sediments in localized half-grabens and graben basins. Steep normal faults and fracture
Orogenic, intrusion-related and epithermal Au (and Sn-W) mineral systems across NE Queensland – diverse manifestations of the same regional thermal and magmatic events driving the Kennedy Igneous Association

- 350-335 Ma - IRGS (Kidston); epithermal Au (Pajingo); orogenic Au (Hodgkinson Province), Sn (Kangaroo Hills)
- 325-290 Ma – orogenic Au (HP); IRGS (Ravenswood, Mungana – Au, Mt Leyshon, Horn Island); Sn (Herberton); Bi-Mo-W
- 285-275 Ma – widespread Au (epithermal – Mt Carlton, Agate Creek, Cape York Peninsula) and local Sn-W deposits (Mt Carbine)
- 265-235 Ma – low-sulphidation epithermal Au in the northern Bowen Basin