Magma fertility and tectonic evolution of the Mary Kathleen Belt

Summary:

- Introduction
- EGRU projects in Mt Isa region
- Update on the magma fertility study- new age data
- Update on the tectonic evolution study- new mapping
- Update on the Tick Hill study new age data
- Conclusions

EGRU (JCU) and GSQ developed a project:

- Establish the extent, character and timing of the dominant magmatic activities in the Mary Kathleen Domain of the Mt Isa Inlier;
- Develop an understanding of the tectono-magmatic history of the Mary Kathleen Domain and its links to metallogenesis;
- Explore the applicability of magma fertility concepts as a tool for exploration for a variety of deposit types.
- Develop new concepts that can be used for exploration in the Mary Kathleen Domain

Collaborate with the GSQ team (David Purdy, Bob Bultitude, Dominic Brown, Derek Hoy, etc.)

Why Mary Kathleen Belt:

- Numerous deposits and prospects
- A wide variety of commodities:

o Cu, Au, Zn, Pb, Ag, U, REE

- Numerous plutons
- Complex structural history
- Intense metasomatic alteration

But:

- No big deposits
- No new discoveries
- No 1550-1500 Ma plutons

The Cloncurry style IOCG systems:

- Strong structural control
- D₃ brittle-ductile structures
- Early sodic alteration
- Late potassic alteration
- Link to 1550-1500 Ma plutons
- Wide range of metals
- Late Isan Orogeny

But :

MKB is not Isan Orogeny

Main points from previous workshop:

- MKB is not an extensional belt
- MKB was metamorphosed, deformed and intruded by plutons during the Wonga Orogeny (1800-1680 Ma)
- Metamorphism, deformation and plutonism was diachronous across the belt
- Sedimentation was diachronous along the belt stratigraphy is not continuous
- Mineralization is related to Isan overprinting

EGRU-GSQ project – on going

Researcher	Project
Dr. Yanbo Cheng	Magma fertility in MKB
Joshua Spence (PhD - on going)	Tectonics and structure of the MKB
Truong Le (PhD – on going)	Tick Hill deposit geology
Alex Edgar (Honours - completed)	Scapolite as a vectoring tool
Travis Mackay (Honours – on going)	Major shear systems in the MKB

EGRU-projects

Researcher	Project
Alex Brown (PhD – on going)	Tommy Creek Domain tectonic evolution (MIM funded)
Pieter Creus (PhD – on going)	Dugald River Deposit – structural controls on the ore body (MMG funded)
Keanu Stinson (Honours – on going)	Starra line – structure and timing (Chinova funded)
Grace Manestar (Honours – on going)	Peak metamorphic fluids

New EGRU-projects

Cu-Zn isotopes applied to Mount Isa deposit

Advertised for a few PhD projects:

- Major shear/fault systems in the Eastern Fold belt
- Scapolite geochemistry as a vector towards mineralization
- Feldspar geochemistry as a vector towards mineralization
- Garnet geochemistry as a vector towards mineralization

• Scapolite geochemistry as a vector towards mineralization

New EGRU-project

Cu-Zn isotopes applied to Mount Isa deposit

Update on the magma fertility studynew age data

Mt Godkin (MGK) granitoids Wonga (WG) granitoids Burstall (BST) granitoids Lunch Creek (LC) gabbro

Sample locations

Mt Godkin (MGK) granitoids: 20 samples Burstal (BST) granitoids: 13 samples Burstal mafic / felsic dykes: 6 samples Lunch Creek (LC) gabbro: 8 samples Wonga (WG) granitoids: 12 samples

Geochemical characteristics

- Wide compositional range: mafic intermediate felsic
- > High alkali content, especially high in K_2O concentration
- \succ MGK granitoids: bimodal K₂O concentrations, shoshonite series vs. low-K series

Update on the tectonic evolution study-new mapping

Dugald River Mine 2019 Fieldwork 2018 Fieldwork 0 5 10 20 30 40 Kilometers 2019 Fieldwork

Mary Kathleen Belt

Task	Results	
Field work	48 days	
Mapping area covered	Total Duchess Mount Godkin	~79km ² 51km ² 28km ²
Samples Collected – Mount Godkin	Thin Sections U-Pb dating	17 2
Samples Collected – Duchess	Thin Sections U-Pb dating <i>Geochemistry</i> Myubee Granite Myubee Igneous Complex	20-30 6 14 13
Total samples collected	65	
Writing	Mary Kathleen – 85-90% complete Mount Godkin - ~15-20% complete Duchess – Field notes only	

Duchess area

Mount Godkin area

Some important observations:

- Mt Godkin postdates at least 2 folding events
- Mt Godkin granite cuts across the West Godkin Fault
- Myubee gabbro predates the Myubee granite
- Myubee granite intruded syn to late tectonic
- Revenue granite records 2 cleavage/folding events
- Revenue granite intruded early to syn tectonic
- Overlander granite intruded syn tectonic

Overall a similar tectonic history to the Mary Kathleen Syncline suggesting deformation, metamorphism and plutonism during the Wonga Orogeny (pre 1700 Ma)

Update on the Tick Hill study- new age data

Sample TH032

	Weighted Mean	Kernel Density Estimation
8375		3375
3234		3234
3093	•••••••••••••••••••••••••••••••••••••••	3093
2952		2952
2811		2811
2670	I	2670
2529		2529
2388		2388
2247	¹	2247 5
2106		2106
1965		1965
1824	⁴ hudhi0ii000	1824
1683	······	1683 5
1542	_m u	1542
1401	μμ ^τ	1401
1260		1260

Post-tectonic pegmatite underneath the Au-rich ore zone; Drill hole TH032

Sample TH032

>90% concordance, zircons with very dark CL domains

Post-tectonic pegmatite underneath the Au-rich ore zone; Drill hole TH032

Sample TH032

>95% concordance, altered zircons under CL images

Post-tectonic pegmatite underneath the Au-rich ore zone; Drill hole TH032

- Pegmatite associated with en-echelon quartz veins (and Normal-sinistral movement; N Pit wall
- Late tectonic pegmatite crosscutting the mylonitic foliation

Altered zircon grains in CL images with the ages around ~1522 Ma

- Pegmatite associated with en-echelon quartz veins; N Pit wall
- Late tectonic pegmatite crosscutting the mylonitic foliation

>90% concordance, older zircons, altered under CL images

- Pegmatite associated with en-echelon quartz veins; N Pit wall
- Late tectonic pegmatite crosscutting the mylonitic foliation

>90% concordance, old zircons, unaltered cores under CL images

- Pegmatite associated with en-echelon quartz veins; N Pit wall
- Late tectonic pegmatite crosscutting the mylonitic foliation

TH108

Post-tectonic pegmatite ~130m below the mineralization zone ; Drill hole U8506-224m-236.6m-240m:

<mark>~1523 Ma</mark>

TH108

Most zircons appear altered in CL images

Post-tectonic pegmatite ~130m below the mineralized zone; Drill hole U8506-224m-236.6m-240m:

THM27 group

> 95% concordance, bright CL domains

Au-rich quartz-feldspar mylonite off-cuts (metasomatised?)

THM04 group

data-point error symbols are 2o

data-point error ellipses are 20

3.5

Intercepts at -194±950 & 1793±25 [±26] Ma

MSWD = 1.9

3.7

> 95% concordance, bright concentric CL domains

Au-rich ultra quartz-feldspar mylonite off-cuts

Zircon geochemistry changes with the age

Conclusions

- Many similarities in mineralization style with deposits in the Cloncurry area
- Deformation and plutonism in the MKB occurred during the Wonga Orogeny (pre 1700 Ma)
- There is a wide variety of intrusion types
- The mafic and felsic magmatism could be unrelated
- There is evidence of ~1530 Ma magmatic/hydrothermal activity
- There is evidence of reactivation during the Isan Orogeny
- Isan age structures could be potential targets for mineralization

