

Central Eastern Fold Belt Solid Geology

Insights from crustal architecture

Karen Connors

DNRME New Discovery Program, Technical Workshop, September 19, 2019

Location and seismic

- Solid Geology interpretation
- Builds on GSQ, Deep Mining Queensland, Ernest Henry, and Southern EFB projects (DNRME and BRC)
- Data
 - Magnetics govt and industry
 - Gravity, Radiometrics, Hyperspectral, Aster
 - Drill hole data industry and govt
 - Seismic
- In progress (confidential 1 year)
- Opportunity to participate

142°0'0"E

2

Location and seismic

Approach

- Crustal architecture •
- Seismic key in this area ٠
- Integrated interpretation •

Outline

- Stratigraphy •
- Regional seismic •
- Evidence for SCG extension / ٠ hyperextension

Legend

Mt Isa Inlier Outcrop

Seismic 2019

- Seismic in AOI ٠
- Conclusions ٠

Sratigraphy

4

Isan Orogeny from ca 1606 Ma (low-P, high-T prograde metamorphism); crustal thickening (E-W shortening) ca 1590-1570 Ma

Key questions

Solid geology from GSQ, DMQ, and SEFB projects

- What forms basement?
- Extent of Staveley?
- Extent of Llewellyn Creek (LCF)?
- Staveley below MNQ / LCF absent??
 - Staveley dips east beneath SCG; but does not appear to resurface

Central Eastern Fold Belt Crustal Architecture| September 19, 2019

Location and seismic

Seismic data

- Different and competing interpretations
- Variable data quality
- Some clear observations can be made
- provide fundamental constraints

6

Regional Seismic

Regional Seismic

Prominent packages of reflectors (some may be faults of unspecified age)

Steep faults in proximity to interpreted surface trace of Cloncurry and Pilgrim faults

1

Central Eastern Fold Belt Crustal Architecture| September 19, 2019

Regional Seismic – DMQ interpretation

Answer Slate overlies Staveley - Mitakoodi

Extension

SCG extensional models - intracontinental basin (Ellis and Wyborn, 1984; Williams, 1998; Hattan, 2004; Giles et al., 2006) or back-arc (Gibson et al., 2008; 2016; 2018) Difficult to quantify crustal thinning

Observations

Outcrop – preserved SCG 5-8 km (10-15 km in seismic) Widespread detachment and pervasive layer parallel fabric – near horizontal and folded Voluminous mafic magmatism – high Fe tholeiites sourced from mantle Felsic magmatism Possible oceanic crust to east (Etheridge Province; Baker et al., 2010) Seismic – imbrication of crustal slices 5-15 km thick High geothermal gradient (45°C / km) at start of Isan thin-skinned (1606 Ma; Porteau et al., 2018)

Significant, widespread extension Implications for geometry of EFB prior to Isan Orogeny

Extension and hyperextension

Insights from the geometry of extended margins

Central Eastern Fold Belt Crustal Architecture| September 19, 2019

Hyperextension, serpentinisation and detachment faulting

- As stretching factor increases and crust thins (to ~10 km), the upper and lower crust become coupled and embrittled
- 2. Brittle faults extend through entire crust allowing sea water to access mantle
- Partial hydration (serpentinisation) of the upper mantle produces a weak zone that forms a detachment – leading to exhumation of mantle

Range of factors – rate of extension, sedimentary cover thickness, temperature, and mantle magma supply

Hyperextension - examples

Cardenas et al. (2018) Iberian margin (Portugal) Mantle peridotites in outcrop Clerc et al. (2016) Pyrenees Lutetian a Oceanic **Exhumed Mantle** Necking Proximal Hyperthinned Ypresian Bugarach Peak Quillan St Paul de Rogniacian-Vitrollian Fenouillet (projected) syncline Peridotites Domain (OCT) Domain Domain Domain Domain Coniacian-Maastrichtian NPF syncline le Beza Salvezines Limoux Turonian Roucheville NPFT Coustaussa St Polycarpe basin Hyperextended domain AfterTugend et al., 2015a Cenomanian Axial V=2H Albian Zone Aptian (Urgonian facies) Valanginian to lowermost Aptian TPAS AS Seafloor Late Berriasian to early Valanginian Mouthoumet Bois du Lauzet Sag-type basir Cardou block Allochthons Dogger-Malm Alet-les-Bains block block alf-grabe Liassic Vp<8km/ Rhetian Keuper Dévonian-Carboniferous Restoration of intracontinental hyperextended basin, Pyrenees Silurian Ordovician b Crystalline basement Triassic N Future NPFT 30-S Salvezines Future Bugarach thrust 350 250 200 150 100 50 Boucheville basin St Paul de Fenouillet basin Quillan basin Distance (km) Low angle fault Sedimentary cover Top basement detachment faults-High-β structures Exhumed Continental crust blocks over High-angle normal faults- Low-B structures mantle - ODP Serpentinized mantle Mouthoumet TAS= total accomodation space Antle Oceanic crust detachment PAS= potential accomodation space Bois du Lauzet Cardou block Alet-les-Bains block Undifferentiated mantle block Thick Albian Triassic to L sequence Cretaceous 1. Zone of greatest thinning crustal thickness corresponds with area where more **HT-LP Cretaceous Metamorphism** stratigraphy is missing (youngest units overlie detachment) Clerc et al. (2016) West Africa margin Post-salt sediments 1.0 Upper crust Magmatism 2. Syn-extension units have Late syn-rift sedimentary deposits Lower crust Post-rift evaporites 2.0 Diachronic syn-rift sedimentary sequence Mantle differences in areal extent 20 25 4.0 Post-rift 3. Older syn-extensional units can be faulted during ongoing extension Basement

Mantle

Late syn-rift sedimentary deposits Diachronic syn-rift sedimentary sequence

Insights from the geometry of extended margins

Clerc et al. (2016)

Detachment – localised in Staveley carbonates Detachment – "young over old" with missing stratigraphy Older unit - Llewellyn Creek Formation – limited extent Observations consistent with an extensional setting *Possibly involving hyperextension*

Seismic DMQ interpretation

Central Eastern Fold Belt Crustal Architecture| September 19, 2019

Note that line work highlights a few main features for the purpose of this talk and is not intended as a detailed interpretation

Seismic 06GA-M5

Summary

Seismic data is variable quality but provides clear information: crustal architecture, structural evolution, and surface geology

- Reflective crust of "Numil" extends beneath EFB and Soldiers Cap Group
- Buried competent block (07GA-IG1) may extend south (06GA-04)
- Gidyea "suture" juxtaposition of crustal blocks "separated" during SCG extension
- Numil may represent highly attenuated "Isa" crust *or* was accreted prior to SCG deposition

19

Summary

- Structure style / geometry of Isan Orogeny controlled by extensional architecture – low angle faults, fault blocks and detachment
- Crust was highly thinned during SCG deposition
- Staveley (and detachment) extends beneath the SCG
- Soldiers Cap Domain represents a large extensional basin(s) inverted during Isan Orogeny (cf Giles et al., 2006)
- Difficult but possible to "see through" Isan Orogeny and start to understand the extensional fault system

Note that line work highlights a few main features for the purpose of this talk and is not intended as a detailed interpretation

Thank you

Assoc Prof Karen Connors| Principal Research Fellow WH Bryan Mining and Geology Research Centre Sustainable Minerals Institute <u>k.connors@uq.edu.au</u>

www.smi.uq.edu.au

in

facebook.com/uqsmi

- twitter.com/smi_uq
- linkedin/school/sustainable-minerals-institute

